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1 Proper Model Category

In a model category, fibrations are preserved under pullbacks, and cofibrations
are preserved under pushouts. But weak equivalences, in general does not
have such closure property. In a proper model category, weak equivalences are
preserved under certain pullbacks and pushouts.

Definition 1.1. (Left proper model category) A model category is called left
proper if weak equivalences are preserved under pushouts along cofibrations,
i.e, for every f : B— X in we(C) and for every i : B— A in cof(C), the pushout
morphism i, f : A — A] [ X is in we(C).

Definition 1.2. (Right proper model category) A model category is called right
proper if weak equivalences are preserved under pullbacks along fibrations, i.e,
for every f : A —» Y in we(C) and for every p: X — Y in fib(C), the pullback
morphism p*f : X xy A — X is in we(C).

XxyA—> A

v lf

XT>Y

Definition 1.3. (Proper model category) A model category is called proper if it
is both left proper and right proper.



2 Homotopy fiber squares

Definition 2.1. Let C be a proper model category. A commutative square in C,

A——C

Lb

BT>D

is called a homotopy fiber square if for some factorization C 4, E(f) b of f
where if is in we(C) and py is in fib(C),

A - yC o,
It N

Bxp E(f) E(f)
B’/ >D]/pf

the induced morphism A — B xp E(f) is in we(C).

Proposition 2.1. Let C be a proper model category. Then the following statements
are equivalent:-

1. The commutative square in C,

A—C

Ll

B——D
is a homotopy fiber square.

i p
2. For some factorization B —> E(g) 5 Dof g where i, is in we(C) and py is

in fib(C),

P
E(g)

the induced morphism A — E(g) xp C is in we(C).
Proof. (1 = 2) Suppose the commutative square in (1) is a homotopy fiber

! P L.
square and take any factorization B 5 E(g) - Dof g where i; is in we(C) and



pgisin fib(C). Then consider the commutative diagram,

iq Pg

where C L E(f) ., D is one such factorization of f,if in we(C) and py in
fib(C), such that i} is in we(C). Now the bottom right square being a pullback,
Pg and py is in fib(C). Again C being proper, and the bottom left and top right
squares being pullbacks, if, ig is in we(C). Finally by the 2-out-of-3 property, i,
is in we(C). R

(2 = 1) Similar argument as above, just in this case we assume that i, is in

we(C), and conclude that i} is in we(C). O

Therefore, we conclude that (1) and (2) holds for every such factorization of
f and g.

Proposition 2.2. Let C be a proper model category, and consider the commutative
square.

A—— C
f g
BTH)

If f is in we(C), then f is in we(C) iff the above square is a homotopy fiber square.

Proof. Let g = p,i, be a factorization of p, where i, is in we(C) and py is in fib(C).
Consider the commutative diagram,

S
J/\N
O

.
o

pef
Bxp E(g) —— E(g)
f*Pg lpg

where pg f is in we(C), since C is proper. Now, if f is in we(C), then by the
2-out-of-3 property, 17~is in we(C). Conversely, if i is in we(C), then again by the
2-out-of-3 property, f is in we(C).

O



Proposition 2.3. Let C be a proper model category and consider the commutative
square,

A—— C——E

Ll

B—D——F

where the right square is a homotopy fiber square. Then the left square is also a
homotopy fiber square iff the total rectangle is a homotopy fiber square.

Proof. Consider the commutative diagram,

A—* et E
1y g f
N N\ ¢
h R lg>Q lf>P
‘/ph ‘/Pg l/Pf

B > D > F

)4 o

where we first factorize f = prir, where if is in we(C), and py is in fib(C). Then
take the pullback of py along o in order to factorize g = pyi,. Since py is in
fib(C), pg is in fib(C). Also, since the right square is a homotopy fiber square,
ig is in we(C). Again take the pullback of p, along , to factorize h = pi;. Now
suppose the left square is a homotopy fiber square. Then ij, is in we(C). But py, is
a pullback of py along 6y, which implies that the total rectangle is a homotopy
fiber square.
Conversely, let the total rectangle be a homotopy fiber square. Then ij, is in
we(C), which implies that that the left square in a homotopy fiber square.

O

Proposition 2.4. Every retract of a homotopy fiber square in CH is a homotopy
fiber square.

3 O-structures on proper model categories

Let C be a proper model category and Q : C — C be an endofunctor. A morphism
f:X —>YinCis called

* a Q-equivalence if O(f) : Q(X) — O(Y) is a weak equivalence in C.
* a Q-cofibration if f is a cofibration in C.

* a Q-fibration if f has the right lifting property with respect to Q-trivial
cofibrations.

Definition 3.1. (Quillen idempotent monad) Let C be a proper model category.
A Quillen idempotent monad on C is

* an endofunctor 9:C —C



* anatural transformation : 1 — Q
such that
1. Qis homotopical, i.e., Q preserves weak equivalences.

2. For every object X in C, the morphisms, Q(11x), 11g(x) : Q(X) — Q(Q(X)) are
weak equivalences.

3. For a pullback square in C,

XxyA—> A

vr| lf

XT>Y

if p is a OQ-fibration and f is a Q-equivalence, then p*f is a Q-equivalence.

4. For a pushout square in C,

if | Tf

A(I,—B

if i is a Q-cofibration and f is a Q-equivalence, then i, f is a Q-equivalence.

For a Quillen idempotent monad Q on C, let C2 denote the category C
equipped with Q-equivalences, Q-fibrations and Q-cofibrations.

Lemma 3.1. A morphism f : X — Y in C is in we(C) N fib(C) iff f is a Q-trivial
fibration.

Proof. Let f : X — Y be in we(C) N fib(C). Then by (1), f is a @-equivalence.
Now consider the commutative square,

A—X

| Ir

B——Y

where i is a Q-trivial cofibration. Since i is a Q-cofibration, 7 is in cof (C) and f
being in we(C) N fib(C), f has the right lifting property with respect to i. Hence,
f is a Q-trivial fibration.

Conversely, let f : X — Y in C be a Q-trivial fibration. Then f = pif where
irisin cof (C) and py is in we(C) N fib(C). Now Q(f) = Q(ps)Q(if), where Q(f)
is in we(C). Also by (1), Q(py) is in we(C). By the 2-out-of-3 property, if is a
Q-equivalence. So, iy is a Q-trivial cofibration, hence has the left lifting property
with respect to f. By the retract argument, f is a retract of py, therefore, f is in
we(C) N fib(C). O



Lemma 3.2. If a morphism f : X — Y isin fib(C), and nx : X - O(X), ny : ¥ —
Q(Y) are in we(C), then f is a Q-fibration.

Proof. For any commutative square,

A2 X

il/ //ﬂ lf
B T} Y

where i is a Q-trivial cofibration, it suffices to show that there exists a lift. First,
we factorize the functorial image of the above commutative square,

Q(A) oy 7 Py o(x)

o] lﬂ Jon
B Pp
Q(B) — W —— Q(Y)
where, j,, jg are in we(C) Ncof (C) and p,,pp are in fib(C). We obtain this
factorization in the following way: first factorize Q(f) = pgjg, where jg is in
we(C)Ncof (C) and pg is in fib(C). Then take the pullback (Q(f))*(pg) : W xg(y)
Q(X) = Q(X) of pg along Q(f), which is in fib(C), since pg is. By the universal
property, there exists an unique morphism h: Q(A) — W xg(y) Q(X), such that
Q(a) = (Q(f))"(pp)h. Again factorize h = gj,, where, j, is in we(C)Ncof(C) and
q is in fib(C). Finally, set p, = (Q(f))"(pp)g and 7 = (pg)*(Q(f))q.

> Q(X)

W xgy) Q(X) Q(f)

o(B) o) > Q(Y)
w

Now consider the pullback of the right square along the -naturality square on

f




we obtain the commutative diagram,

A (janaa) ZxQ()X X

| D
(jgnB,B)

B—""" Wxgy) Y ——— Y

where the left square is due to the universal property of the pullback. Now we
show that (7, f) is in we(C). For that, consider the diagram,

‘CY D()*
Q(A) ]—> Z Pa) 11X ZXQ(X)X

Q(i)l lﬂ l(”’ f)

B w W xoy) Y
Q()j—ﬁ> m Q(Y)

Since C is proper, (p,)*1x and (pg)*ny are in we(C). By the 2-out-of-3 property,
7 is in we(C), and which further implies that (7, f) is in we(C). Finally factorize
(1, f) = rk, where k is in cof (C) and r is in we(C) N fib(C). By the 2-out-of-3
property, k is in we(C) N cof(C). Then in the following commutative diagram,

(jana.a)

AR Zxom X ———3 X

(ip18.B)

i being in cof (C) and r in we(C) N fib(C), I’ exists. Similarly, k being in we(C) N
cof(C)and f in fib(C), I exists. Hence, Il” is our desired lift.
O



Theorem 3.3. (Bousfield-Friedlander theorem) C< is a proper model catgeory, where

we(C2), cof (C2) and fib(C2) are Q-equivalences, Q-fibrations and Q-cofibrations
respectively.

Proof. Since C is a model category, C2 has limits and colimits. Suppose h = gf,
and two of the three morphisms f,g and & are in we(C<). Then Q(h) = Q(g)Q(f),
and by the 2-out-of-3 property of C, the third morphism is also in we(C<). This
proves the 2-out-of-3 property of C2. Now, since cof (C2) = cof (C), and by
Lemma 2.1, we(C9) N fib(C2) = we(C) N fib(C), we have that (cof (C2), we(C2)N
fib(C2)) is a weak factorization system. On the other hand, by the definition of
fib( CQ we have fib(C2) = (we(C2) N cof (C2))P

Now we consider a morphism f : X — Y in CQ Then we factorize Q(f),

oOX) —— z -2 o)

i in we(C)Ncof (C), hence in we(C2)Ncof(C2) and p in fib(C). In the n-naturality
square,

oX) —-— 7z —P2 5 9(v)

ﬂQ(x)l Nz lﬂgm

QLX) 557 22) T Q(Q(Y))
since 7g(x), i and Q(i) are in we(C), by 2-out-of-3 property, 11 is in we(C). So by

Lemma 2.2, p is in fib(C9). Now, we factorize the -naturality square on f, as
the pullback corner morphism 7 followed by the pullback p of p along 7y,

X —L s Zxop Y —L— v

n Xl lﬁ Ny

oX) — sz —F 5 9(v)

By (3), 77 is in we(C?), since fy isin we(C2) and p is in fib(C2). By the 2-out-of-3
property, i is in we(C2). Also, since p is in fzb(CQ) and fzb(CQ) (we(C2) N
cof (C2))?, p is in fib(C?). Finally, factorize i = §j, where j is in cof(C2) and
g is in we(C2) N fib(C2). By the 2-out-of-3 property of C2, j is in we(C2) N
cof(C?) and jg is our required morphism in fib(C?). Let j be a morphism
in Zfib(CQ), and factorize j = rk, k in we(C2) N cof(CQ) and r in fib(CQ). By
the retract argument, j is a retract of k. But, we(C2) N cof(CQ) is closed under
retracts, since cof(C2) = cof (C) and we(C) C we(C2) are closed under retracts.
Therefore, we(C?) N cof (CC) = Pfib(C?) and (we(C2) N cof (C2), fib(C)) is a
weak factorization system. The properness of C< follows from (3) and (4).

O

Proposition 3.4. A morphism f: X — Y in C is a Q-fibration iff f isin fib(C)



and the #-naturality square on f,

‘r]X

X — 9(X)

fl Jow

Y T) oY)

is a homotopy fiber square in C.

Proof. Let f : X — Y in C be a Q-fibration. Then by the definition of a Q-fibration,
f is in fib(C). We factorize Q(f) = pi, where i is in we(C) N cof(C) and p is in
fib(C), and then consider the commutative diagram,

X — s Zxoy ¥ —E— v

’lxl lp* Ny My
Z

Q(X) Lo

'19<x>l Nz lﬂgm

QAQX)) —g QA2 —55 AQ(Y)

by the 2-out-of-3 property, 77, is in we(C). So by Lemma 3.2, p is in fib(C9).
Now, since C is proper, p*1jy is in we(C<). Again by the 2-out-of-3 property of
C2, iis in we(C2). In particular, by Proposition 2.2, the bottom right square is
a homotopy fiber square in C, and since p is in fib(C), the top right square is
also a homotopy fiber square in C. Hence, by Proposition 2.3, the total right
rectangle is a homotopy fiber square in C. By the naturality of #, the total right
rectangle is same as the commutative rectangle,

Zxqu) Y ——

Y
’/IZXQ(y)Y\L l’]y
p)

AZxgiy)Y) —— Q(Y)

Q(p*rml lﬂ@

(Y)
Q(2) Tp)> Q(Q(Y))

Since p*njy is in we(C2), Q(p*ny) is in we(C). Again by Proposition 2.2, the
bottom square is a homotopy fiber square in C. Since the total rectangle is a
homotopy fiber square, by Proposition 2.3, the top square is a homotopy fiber
square in C as well. By the 2-out-of-3 property of C2, we factorize i = rk, k in
we(C2) Ncof(C2) and r in we(C2) N fib(CY), which implies f is a retract of pr.

\O



Now, the #-naturality square on 7,
E(i) —— Y xgy) Z
NEG) l7]YXQ(y)Z
Q(E(1)) Y (Y xgv) Z)

is a homotopy fiber square in C since r is in we(C2) N fib(CC) = we(C) N fib(C)
and Q(r) is in we(C). It follows that the ;-naturality square of pr,

’
ME() l’mg(y)z l’?y

. i
E(1) = YXQ(y)Z Y Q(X) = Q(Y)
NEG, Ty
i]x\L M

AX) 5 2Y)

it implies that the ;j-naturality square on f is a retract of the #-naturality square
on jr in CH. Therefore, by Proposition 2.4, the yj-naturality square on f is a
homotopy fiber square in C.

Conversely, let f be in fib(C) and that the x-naturality square on f is a
homotopy fiber square in C. First we factor Q(f) = pi, where i is in we(C)Ncof(C)
and p is in fib(C). By the proof of Theorem 3.3,

X — s Zxom Y —2— ¥

R

oX) — sz —F 5 9(v)

pisin fib(C?), which implies pisin fib(C<) since fib(C?)is closed under taking
pullbacks. Now since the #-naturality square on f is a homotopy fiber square in
C, i is in we(C). Hence, by the 2-out-of-3 property, i admits a factorization i = qj,
where j is in we(C) N cof(C) and g is in we(C) N fib(C) = we(C2) N fib(C2). So we
get, f = pi = (pq)j, where (pq) is in fib(C<). Therefore, by the retract argument,
f is a retract of (pgq), i.e., in fib(C<). O

10
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