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1 Proper Model Category

In a model category, fibrations are preserved under pullbacks, and cofibrations
are preserved under pushouts. But weak equivalences, in general does not
have such closure property. In a proper model category, weak equivalences are
preserved under certain pullbacks and pushouts.

Definition 1.1. (Left proper model category) A model category is called left
proper if weak equivalences are preserved under pushouts along cofibrations,
i.e, for every f : B→ X in we(C) and for every i : B→ A in cof (C), the pushout
morphism i∗f : A→ A

∐
BX is in we(C).

A
∐

BX X

A B

i∗f f

i

Definition 1.2. (Right proper model category) A model category is called right
proper if weak equivalences are preserved under pullbacks along fibrations, i.e,
for every f : A→ Y in we(C) and for every p : X → Y in f ib(C), the pullback
morphism p∗f : X ×Y A→ X is in we(C).

X ×Y A A

X Y

p∗f f

p

Definition 1.3. (Proper model category) A model category is called proper if it
is both left proper and right proper.
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2 Homotopy fiber squares

Definition 2.1. Let C be a proper model category. A commutative square in C,

A C

B D

f

g

is called a homotopy fiber square if for some factorization C
if
−→ E(f )

pf
−−→ D of f

where if is in we(C) and pf is in f ib(C),

A C

B×D E(f ) E(f )

B D

if

pf
g

the induced morphism A→ B×D E(f ) is in we(C).

Proposition 2.1. Let C be a proper model category. Then the following statements
are equivalent:-

1. The commutative square in C,

A C

B D

f

g

is a homotopy fiber square.

2. For some factorization B
ig
−→ E(g)

pg
−−→D of g where ig is in we(C) and pg is

in f ib(C),
A C

E(g)×D C

B D

E(g)

f

ig pg

the induced morphism A→ E(g)×D C is in we(C).

Proof. (1 =⇒ 2) Suppose the commutative square in (1) is a homotopy fiber

square and take any factorization B
ig
−→ E(g)

pg
−−→D of g where ig is in we(C) and

2



pg is in f ib(C). Then consider the commutative diagram,

A E(g)×D C C

B×D E(f ) E(g)×D E(f ) E(f )

B E(g) D

îg

ˆif

p̂g

ĩf if

p̂f

ĩg p̃g

p̃f pf

ig pg

where C
if
−→ E(f )

pf
−−→ D is one such factorization of f , if in we(C) and pf in

f ib(C), such that îf is in we(C). Now the bottom right square being a pullback,
p̃g and p̃f is in f ib(C). Again C being proper, and the bottom left and top right
squares being pullbacks, ĩf , ĩg is in we(C). Finally by the 2-out-of-3 property, îg
is in we(C).
(2 =⇒ 1) Similar argument as above, just in this case we assume that îg is in

we(C), and conclude that îf is in we(C).

Therefore, we conclude that (1) and (2) holds for every such factorization of
f and g.

Proposition 2.2. Let C be a proper model category, and consider the commutative
square.

A C

B D

f̃

f̃ g

f

If f is in we(C), then f̃ is in we(C) iff the above square is a homotopy fiber square.

Proof. Let g = pg ig be a factorization of p, where ig is in we(C) and pg is in f ib(C).
Consider the commutative diagram,

A C

B×D E(g) E(g)

B D

f̃

ĩ ig
p∗g f

f ∗pg pg

f

where p∗gf is in we(C), since C is proper. Now, if f̃ is in we(C), then by the
2-out-of-3 property, ĩ is in we(C). Conversely, if ĩ is in we(C), then again by the
2-out-of-3 property, f̃ is in we(C).
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Proposition 2.3. Let C be a proper model category and consider the commutative
square,

A C E

B D F

where the right square is a homotopy fiber square. Then the left square is also a
homotopy fiber square iff the total rectangle is a homotopy fiber square.

Proof. Consider the commutative diagram,

A C E

R Q P

B D F

α
ih

h

β

ig

g

if

f

ph pg pf

γ δ

where we first factorize f = pf if , where if is in we(C), and pf is in f ib(C). Then
take the pullback of pf along δ in order to factorize g = pg ig . Since pf is in
f ib(C), pg is in f ib(C). Also, since the right square is a homotopy fiber square,
ig is in we(C). Again take the pullback of pg along γ , to factorize h = phih. Now
suppose the left square is a homotopy fiber square. Then ih is in we(C). But ph is
a pullback of pf along δγ , which implies that the total rectangle is a homotopy
fiber square.
Conversely, let the total rectangle be a homotopy fiber square. Then ih is in
we(C), which implies that that the left square in a homotopy fiber square.

Proposition 2.4. Every retract of a homotopy fiber square in C□ is a homotopy
fiber square.

3 Q-structures on proper model categories

Let C be a proper model category and Q : C → C be an endofunctor. A morphism
f : X→ Y in C is called

• a Q-equivalence if Q(f ) :Q(X)→Q(Y ) is a weak equivalence in C.

• a Q-cofibration if f is a cofibration in C.

• a Q-fibration if f has the right lifting property with respect to Q-trivial
cofibrations.

Definition 3.1. (Quillen idempotent monad) Let C be a proper model category.
A Quillen idempotent monad on C is

• an endofunctor Q : C → C
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• a natural transformation η : 1C→Q

such that

1. Q is homotopical, i.e., Q preserves weak equivalences.

2. For every object X in C, the morphisms, Q(ηX ),ηQ(X) :Q(X)→Q(Q(X)) are
weak equivalences.

3. For a pullback square in C,

X ×Y A A

X Y

p∗f f

p

if p is a Q-fibration and f is a Q-equivalence, then p∗f is a Q-equivalence.

4. For a pushout square in C,

A
∐

BX X

A B

i∗f f

i

if i is a Q-cofibration and f is a Q-equivalence, then i∗f is a Q-equivalence.

For a Quillen idempotent monad Q on C, let CQ denote the category C
equipped with Q-equivalences, Q-fibrations and Q-cofibrations.

Lemma 3.1. A morphism f : X → Y in C is in we(C)∩ f ib(C) iff f is a Q-trivial
fibration.

Proof. Let f : X → Y be in we(C)∩ f ib(C). Then by (1), f is a Q-equivalence.
Now consider the commutative square,

A X

B Y

i f

where i is a Q-trivial cofibration. Since i is a Q-cofibration, i is in cof (C) and f
being in we(C)∩ f ib(C), f has the right lifting property with respect to i. Hence,
f is a Q-trivial fibration.

Conversely, let f : X→ Y in C be a Q-trivial fibration. Then f = pf if where
if is in cof (C) and pf is in we(C)∩ f ib(C). Now Q(f ) = Q(pf )Q(if ), where Q(f )
is in we(C). Also by (1), Q(pf ) is in we(C). By the 2-out-of-3 property, if is a
Q-equivalence. So, if is aQ-trivial cofibration, hence has the left lifting property
with respect to f . By the retract argument, f is a retract of pf , therefore, f is in
we(C)∩ f ib(C).
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Lemma 3.2. If a morphism f : X→ Y is in f ib(C), and ηX : X→Q(X), ηY : Y →
Q(Y ) are in we(C), then f is a Q-fibration.

Proof. For any commutative square,

A X

B Y

i

α

f

β

where i is a Q-trivial cofibration, it suffices to show that there exists a lift. First,
we factorize the functorial image of the above commutative square,

Q(A) Z Q(X)

Q(B) W Q(Y )

Q(i)

jα

π

ρα

Q(f )
jβ ρβ

where, jα , jβ are in we(C) ∩ cof (C) and ρα ,ρβ are in f ib(C). We obtain this
factorization in the following way: first factorize Q(β) = ρβjβ , where jβ is in
we(C)∩ cof (C) and ρβ is in f ib(C). Then take the pullback (Q(f ))∗(ρβ) : W ×Q(Y )
Q(X)→Q(X) of ρβ along Q(f ), which is in f ib(C), since ρβ is. By the universal
property, there exists an unique morphism h :Q(A)→W ×Q(Y )Q(X), such that
Q(α) = (Q(f ))∗(ρβ)h. Again factorize h = qjα , where, jα is in we(C)∩ cof (C) and
q is in f ib(C). Finally, set ρα = (Q(f ))∗(ρβ)q and π = (ρβ)∗(Q(f ))q.

Z Q(A) Q(X)

W ×Q(Y )Q(X)

Q(B) Q(Y )

W

q

π

Q(i)

Q(α)

!h

jα

Q(f )

Q(f )∗ρβ

Q(β)

jβ ρβ

Now consider the pullback of the right square along the η-naturality square on
f ,
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Z ×Q(X) X

A W ×Q(Y ) Y X

B Q(A) Z Q(X) Y

Q(B) W Q(Y )

(π,f )

i ηA

(jαηA,α)

ηX f

ηB

(jβηB,β)

Q(i)

jα

π

ρα

Q(f ) ηY
jβ ρβ

we obtain the commutative diagram,

A Z ×Q(X) X X

B W ×Q(Y ) Y Y

(jαηA,α)

i (π,f ) f

(jβηB,β)

where the left square is due to the universal property of the pullback. Now we
show that (π,f ) is in we(C). For that, consider the diagram,

Q(A) Z Z ×Q(X) X

Q(B) W W ×Q(Y ) Y

jα

Q(i) π (π,f )

(ρα)∗ηX

jβ (ρβ )∗ηY

Since C is proper, (ρα)∗ηX and (ρβ)∗ηY are in we(C). By the 2-out-of-3 property,
π is in we(C), and which further implies that (π,f ) is in we(C). Finally factorize
(π,f ) = rk, where k is in cof (C) and r is in we(C)∩ f ib(C). By the 2-out-of-3
property, k is in we(C)∩ cof (C). Then in the following commutative diagram,

A Z ×Q(X) X X

A ⋆ Y

B W ×Q(Y ) Y Y

(jαηA,α)

1A k f

i r

l

1Y

(jβηB,β)

l′

i being in cof (C) and r in we(C)∩ f ib(C), l′ exists. Similarly, k being in we(C)∩
cof (C) and f in f ib(C), l exists. Hence, ll′ is our desired lift.

7



Theorem 3.3. (Bousfield-Friedlander theorem) CQ is a proper model catgeory, where

we(CQ), cof (CQ) and f ib(CQ) are Q-equivalences, Q-fibrations and Q-cofibrations
respectively.

Proof. Since C is a model category, CQ has limits and colimits. Suppose h = gf ,
and two of the three morphisms f ,g and h are in we(CQ). Then Q(h) =Q(g)Q(f ),
and by the 2-out-of-3 property of C, the third morphism is also in we(CQ). This
proves the 2-out-of-3 property of CQ. Now, since cof (CQ) = cof (C), and by
Lemma 2.1, we(CQ)∩ f ib(CQ) = we(C)∩ f ib(C), we have that (cof (CQ),we(CQ)∩
f ib(CQ)) is a weak factorization system. On the other hand, by the definition of
f ib(CQ), we have f ib(CQ) = (we(CQ)∩ cof (CQ)) .
Now we consider a morphism f : X→ Y in CQ. Then we factorize Q(f ),

Q(X) Z Q(Y )i p

i in we(C)∩cof (C), hence in we(CQ)∩cof (CQ) and p in f ib(C). In the η-naturality
square,

Q(X) Z Q(Y )

Q(Q(X)) Q(Z) Q(Q(Y ))

i

ηQ(X)

p

ηZ ηQ(Y )

Q(i) Q(p)

since ηQ(X), i and Q(i) are in we(C), by 2-out-of-3 property, ηZ is in we(C). So by
Lemma 2.2, p is in f ib(CQ). Now, we factorize the η-naturality square on f , as
the pullback corner morphism ĩ followed by the pullback p̃ of p along ηY ,

X Z ×Q(Y ) Y Y

Q(X) Z Q(Y )

ĩ

ηX

p̃

η̃ ηY

i p

By (3), η̃ is in we(CQ), since ηY is in we(CQ) and p is in f ib(CQ). By the 2-out-of-3
property, ĩ is in we(CQ). Also, since p is in f ib(CQ) and f ib(CQ) = (we(CQ) ∩
cof (CQ)) , p̃ is in f ib(CQ). Finally, factorize ĩ = q̃j̃, where j̃ is in cof (CQ) and
q̃ is in we(CQ) ∩ f ib(CQ). By the 2-out-of-3 property of CQ, j̃ is in we(CQ) ∩
cof (CQ) and p̃q̃ is our required morphism in f ib(CQ). Let j be a morphism
in f ib(CQ), and factorize j = rk, k in we(CQ)∩ cof (CQ) and r in f ib(CQ). By
the retract argument, j is a retract of k. But, we(CQ)∩ cof (CQ) is closed under
retracts, since cof (CQ) = cof (C) and we(C) ⊆ we(CQ) are closed under retracts.
Therefore, we(CQ) ∩ cof (CQ) = f ib(CQ) and (we(CQ) ∩ cof (CQ), f ib(CQ)) is a
weak factorization system. The properness of CQ follows from (3) and (4).

Proposition 3.4. A morphism f : X→ Y in C is a Q-fibration iff f is in f ib(C)
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and the η-naturality square on f ,

X Q(X)

Y Q(Y )

ηX

f Q(f )

ηY

is a homotopy fiber square in C.

Proof. Let f : X→ Y in C be aQ-fibration. Then by the definition of aQ-fibration,
f is in f ib(C). We factorize Q(f ) = pi, where i is in we(C)∩ cof (C) and p is in
f ib(C), and then consider the commutative diagram,

X Z ×Q(Y ) Y Y

Q(X) Z Q(Y )

Q(Q(X)) Q(Z) Q(Q(Y ))

ĩ

ηX

p̃

p∗ηY
ηY

i

ηQ(X)

p

ηZ ηQ(Y )

Q(i) Q(p)

by the 2-out-of-3 property, ηZ is in we(C). So by Lemma 3.2, p is in f ib(CQ).
Now, since CQ is proper, p∗ηY is in we(CQ). Again by the 2-out-of-3 property of
CQ, ĩ is in we(CQ). In particular, by Proposition 2.2, the bottom right square is
a homotopy fiber square in C, and since p is in f ib(C), the top right square is
also a homotopy fiber square in C. Hence, by Proposition 2.3, the total right
rectangle is a homotopy fiber square in C. By the naturality of η, the total right
rectangle is same as the commutative rectangle,

Z ×Q(Y ) Y Y

Q(Z ×Q(Y ) Y ) Q(Y )

Q(Z) Q(Q(Y ))

p̃

ηZ×Q(Y )Y
ηY

Q(p̃)

Q(p∗ηY ) ηQ(Y )

Q(p)

Since p∗ηY is in we(CQ), Q(p∗ηY ) is in we(C). Again by Proposition 2.2, the
bottom square is a homotopy fiber square in C. Since the total rectangle is a
homotopy fiber square, by Proposition 2.3, the top square is a homotopy fiber
square in C as well. By the 2-out-of-3 property of CQ, we factorize ĩ = rk, k in
we(CQ)∩ cof (CQ) and r in we(CQ)∩ f ib(CQ), which implies f is a retract of p̃r.
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Now, the η-naturality square on r,

E(ĩ) Y ×Q(Y ) Z

Q(E(ĩ)) Q(Y ×Q(Y ) Z)

r

ηE(ĩ) ηY×Q(Y )Z

Q(r)

is a homotopy fiber square in C since r is in we(CQ)∩ f ib(CQ) = we(C)∩ f ib(C)
and Q(r) is in we(C). It follows that the η-naturality square of p̃r,

E(ĩ) Y ×Q(Y ) Z Y

Q(E(ĩ)) Q(Y ×Q(Y ) Z) Q(Y )

r

ηE(ĩ) ηY×Q(Y )Z

p̃

ηY

Q(r) Q(p̃)

is a homotopy fiber square in C. Now, f being a retract of p̃r in C,

X Y

E(ĩ) Y ×Q(Y ) Z Y Q(X) Q(Y )

X Y Q(E(ĩ)) Q(Y ×Q(Y ) Z) Q(Y )

Q(X) Q(Y )

f

ηX ηY

r
ηE(ĩ) ηY×Q(Y )Z

p̃

ηY

Q(f )

f
ηX ηY

Q(r)

Q(p̃)

Q(f )

it implies that the η-naturality square on f is a retract of the η-naturality square
on p̃r in C□. Therefore, by Proposition 2.4, the η-naturality square on f is a
homotopy fiber square in C.

Conversely, let f be in f ib(C) and that the η-naturality square on f is a
homotopy fiber square in C. First we factorQ(f ) = pi, where i is in we(C)∩cof (C)
and p is in f ib(C). By the proof of Theorem 3.3,

X Z ×Q(Y ) Y Y

Q(X) Z Q(Y )

ĩ

ηX

p̃

η̃ ηY

i p

p is in f ib(CQ), which implies p̃ is in f ib(CQ) since f ib(CQ) is closed under taking
pullbacks. Now since the η-naturality square on f is a homotopy fiber square in
C, ĩ is in we(C). Hence, by the 2-out-of-3 property, ĩ admits a factorization ĩ = qj,
where j is in we(C)∩ cof (C) and q is in we(C)∩ f ib(C) = we(CQ)∩ f ib(CQ). So we
get, f = p̃ĩ = (p̃q)j, where (p̃q) is in f ib(CQ). Therefore, by the retract argument,
f is a retract of (p̃q), i.e., in f ib(CQ).
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