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Introduction

The purpose of this project is to prove the existence and uniqueness of Haar measure on locally compact
topological groups. We begin by stating a few definitions which will be used throughout the subsequent
sections. In order to motivate only focusing on left Haar measure, we show that given a left Haar measure,
one immediately obtains a right Haar measure. We then provide a proof of the existence of left Haar
measure on a locally compact topological group. Then, after a couple of lemmas, we prove uniqueness of
left Haar measure on a locally compact topological group. We note here that, by uniqueness, we mean
that any two Haar measures on a locally compact topological group are not exactly the same, but in fact
only differ by a positive multiplicative constant. We then briefly note how the relation between left and
right Haar measure immediately also implies existence and uniqueness of right Haar measure.

Basic Definitions

To begin with, we quickly review some basic definitions and notations that we will use throughout the
project.

Definition 2.0 (Topological group) A topological group G is a topological space equipped with
a group structure along with the condition that the multiplication map m : G × G → G and the inverse
map (.)−1 : G → G are continuous. In category theoretical language, a topological group is nothing but
a group object in the category Top.

Definition 2.1 (Borel Subset) Let X be a topological space with topology τ and let A ⊆ X. Then,
A is said to be a Borel subset of X iff A ∈ σ[τ ], i.e, the sigma algebra generated by τ .

Definition 2.2 (Topological Measure Space) A topological measure space is a measure space
(X,

∑
, µ), where X is the topological space,

∑
is the sigma algebra of measurable subsets, and µ is

the measure, such that X is a topological space and
∑

is exactly the collection of Borel subsets of X.

Definition 2.3 (Borel Measure) A measure µ on a topological measure space X is called a Borel
measure iff X is Hausdorff.
The reason we add the extra condition of T2 instead of doing things in complete generality, is that, first
of all, most spaces we care about in practice are going to be Hausdorff anyways, and furthermore, we
would like to know that compact subsets are measurable (because in Hausdorff spaces compact subsets
are closed), and in general this won’t necessarily be the case.

Definition 2.4 (Regular Measure) Let (X,
∑
, µ) be a Borel measure space. Then, µ is said to

be regular, or sometimes a regular Borel measure, iff it has the following properties-
(i) Whenever K ⊆ X is compact, then µ(K) <∞.
(ii)Whenever A ∈

∑
, then, µ(A) = inf{µ(U) | A ∈ U,U is open}. This property is called the outer

regularity of µ.
(iii)Whenever A ∈

∑
, then µ(A) = sup{µ(K) | K ∈ A,K is compact}. This property is called the inner
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regularity of µ.

Definition 2.5 (Locally Compact space) A topological space X is called locally compact if for
every point x ∈ X, there exists an open set x ∈ U ⊆ X and a compact K ⊆ X such that U ⊆ K. If X
is Hausdorff, this is equivalent to saying that every point x ∈ X has a compact neighbourhood.

Definition 2.6 (Locally Compact Group) A locally compact group is a topological group G that is
locally compact and T1.

Definition 2.7 (Haar Measure) Let G be a topological group. A left Haar measure (resp. right
Haar measure) on G is a nonzero regular Borel measure µ on G such that µ(gA) = µ(A) (resp. µ(Ag)
= µ(A)) for all g ∈ G and all measurable subsets A of G .

The Existence

Lemma 1. Let G be a topological group, let K be a compact subset of G , and let U be an open subset of
G such that K ⊆ U . Then, there is an open set V containing the identity such that KV ⊆ U .

Proof. For each x ∈ K, define Wx = x−1U . Because x ∈ U , Wx is an open neighborhood of the
identity. Then, pick Vx to be an open neighborhood of the identity such that VxVx ⊆ Wx. Then, the
collection {xVx | x ∈ K} is an open cover of K, so there is a finite collection of points x1, ..., xn such that
K ⊆

⋃n
i=1 xkVxk

. Define V =
⋂n

k=1 Vxk
. Let x ∈ K. Then, there is some xk such that x ∈ xkVxk

, so
that xV ⊆ xkVxk

Vxk
⊆ xkWxk

= U . Thus, KV ⊆ U .

Lemma 2. Let X be a Hausdorff space, let K be a compact subset of X, and let U1 and U2 be open
subsets of X such that K ⊆ U1 ∪U2. Then, there are compact sets K1 and K2 of X such that K1 ⊆ U1,
K2 ⊆ U2, and K= K1 ∪K2.

Proof. Define L1 = K − U1 and L2 = K − U2. K is closed because X is Hausdorff, so each Li is
closed. Because each Li is a closed subspace of K and K is compact, it follows that each Li is also
compact. Furthermore, because K ⊆ U1 ∪ U2, L1 ∩ L2 = ϕ. Because L1 and L2 are disjoint compact
subsets of a Hausdorff space, we can separate them with disjoint open sets, say V1 and V2 respectively.
Define K1 = K − V1 and K2 = K − V2. Similarly as before, both K1 and K2 are compact. Now,
K1 = K − V1 ⊆ K −L1 = K − (K −U1) = K ∩ (K ∩UC

1 )C = K ∩ (KC ∪U1) ⊆ U1. Similarly, K2 ⊆ U2.
Furthermore, K1 ∪K2 = K − (V1 ∩ V2) = K.

Theorem 1. Let G be a locally compact topological group.Then, there exists a left Haar measure on G .

Proof. Let K be a compact subset of G and let V be a subset of G with nonempty interior. Then,
{gV ◦ | g ∈ G } is an open cover of K, so there are a finite number of elements of G , g1, ..., gn, such
that K ⊆

⋃n
k=1 gkV

◦. Let (K : V ) denote the smallest nonnegative integer for which such a sequence
exists. Now, let κ denote the collection of compact subsets of G and let U denote the collection of open
subsets of G containing the identity. Because G is locally compact, there is a compact subset of G with

nonempty interior, call it K0. For each U ∈ U , define a function µU : κ→ R such that µU (K) = (K:U)
(K0:V ) .

Because K0 is nonempty, (K0 : U) ̸= 0, and so µU is well-defined.
As (K : U) is always a nonnegative integer, µU is clearly always nonnegative. We now show that
(K : U) ≤ (K : K0)(K0 : U) for K ∈ κ and U ∈ U . For the remainder of this paragraph, let us
write m = (K : K0) and n = (K0 : U). Then, let g1, ..., gm ∈ G and let h1, ..., hn ∈ G be such that
K ⊆

⋃m
k=1 gkK

◦
0 and K0 ⊆

⋃n
k=1 hkU . Then, K ⊆

⋃m
i=1[

⋃n
j=1 gihjU ], so that K can be covered by mn

cosets of U , so that (K : U) ≤ mn = (K : K0)(K0 : U). It follows that 0 ≤ µU (K) ≤ (K : K0).

Now we construct the Haar measure on κ . Define X =
∏

K∈κ[0, (K : K0)]. Because 0 ≤ µU (K) ≤ (K :
K0), each µU may be thought of as a point in X. Thinking of each µU as a point in X, for each V ∈ U ,
define C(V ) = {µU | U ∈ U,U ⊆ V }. We wish to show that the collection {C(V ) | V ∈ U } possess the
finite intersection property, so let V1, ..., Vn ∈ U . Then, µ⋂n

k=1 Vk
∈

⋂n
k=1 C(Vk) implying,

⋂n
k=1 C(Vk)

is nonempty. Thus, {C(V ) | V ∈ U } satisfies the finite intersection property, and because X is compact
by Tychonoff’s Theorem, it follows that

⋂
V ∈U C(V ) is nonempty, so we may pick some µ ∈

⋂
V ∈U C(V ).
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Next we show the monotonicity of µ on κ. Let K1,K2 ∈ κ be such that K1 ⊆ K2. We first show
that, for each U ∈ U , µU (K1) ≤ µU (K2). But this is trivial, because the covering of K2 with (K2 : U)
cosets of U is also a covering of K1 with (K2 : U) cosets of U , so that (K1 : U) ≤ (K2 : U), and hence
µU (K1) ≤ µU (K2). We think of elements f of X as functions from κ to R, consider the map that sends
f ∈ X to f(K2) − f(K1). This is a composition of continuous functions, and hence continuous. This
map is also nonnegative on each C(V ) because µU (K1) ≤ µU (K2) for each U ∈ U (we need continuity
so that we know it is nonnegative on the entire closure). It follows that this map is also nonnegative at
µ, so that µ(K2)− µ(K1) ≥ 0, so that µ(K1) ≤ µ(K2).

Next we show that µ is finitiely subadditive on κ, i.e. µ(K1∪K2) ≤ µ(K1)+µ(K2). Let K1,K2 ∈ κ. We
first try to show that µU (K1 ∪K2) ≤ µU (K1) + µU (K2) for each U ∈ U . Thus this is trivial, because a
covering of K1 with (K1 : U) cosets of U together with a covering of K2 with (K2 : U) cosets of U , is a
cover of K1 ∪K2 with (K1 : U) + (K2 : U) cosets of U , so that (K1 ∪K2 : U) ≤ (K1 : U) + (K2 : U). It
follows that µU (K1∪K2) ≤ µU (K1)+µU (K2). Proceeding similarly as before, the map that sends f ∈ X
to f(K1) + f(K2)− f(K1 ∪K2) is continuous and nonnegative on each C(V ), and hence is nonnegative
for µ ∈ X. Thus, µ(K1 ∪K2) ≤ µ(K1) + µ(K2).

Now, we would like to show that µ is finitely additive on κ. But we first show that µU (K1 ∪ K2) =
µU (K1) + µU (K2) if K1U

−1 ∩ K2U
−1 = ∅. Let K1,K2 ∈ κ be such that K1U

−1 ∩ K2U
−1 = ∅. Let

g1, ..., gn be such that n = (K1 ∪ K2 : U) and K1 ∪ K2 ⊆
⋃n

k=1 gkU . If some gkU intersects both K1

and K2, then gk ∈ K1U
−1 ∩K2U

−1, a contradiction. Thus, each gkU intersects either K1 or K2, but
not both. Thus, we may find some natural number m with 0 ≤ m ≤ n and reindex the gk’s so that
K1 ⊆

⋃m
k=1 gkU and K2 ⊆

⋃n
k=m+1 gkU . Thus, (K1 : U) + (K2 : U) ≤ (K1 ∪K2 : U). Combining this

result with the previous step, it follows that µU (K1 ∪K2) = µU (K1) + µU (K2) for each U ∈ U .
Now, let K1,K2 ∈ κ be such that K1 ∩K2 = ∅. Then, we may find disjoint open sets U1 and U2 such
that K1 ⊆ U1 and K2 ⊆ U2. By Lemma 1, there are open neighborhoods of the identity V1 and V2 such
that K1V1 ⊆ U1 and K2V2 ⊆ U2. Define V = V1 ∩ V2. Then, K1V and K2V are disjoint because U1 and
U2 are disjoint. Thus, for any U ∈ U with U ⊆ V −1, we have that K1U

−1 ∩K2U
−1 = ∅, so that, by

the previous step, µU (K1 ∪K2) = µU (K1)+µU (K2). Thus, the continuous map from X to R that sends
f ∈ X to f(K1)+f(K2)−f(K1∪K2) is 0 for each f ∈ C(V −1). In particular, µ(K1)+µ(K2) = µ(K1∪K2).

Our next goal is to extend µ to 2G .
For U ⊆ G open, we define µ(U) = sup {µ(K) | K ⊆ U,K ∈ κ}. We must show that if K
is compact and open, these two definitions of µ(K) agree. That is, we must show that µ(K) =
sup{µ(K ′) | K ′ ⊆ K,K ′ ∈ κ} , where here the LHS is the original definition of µ as a point in⋂

U∈U C(U). Trivially, since µ(K) ∈ {µ(K ′) | K ′ ⊆ K,K ′ ∈ κ}, µ(K) ≤ sup {µ(K ′) | K ′ ⊆ K,K ′ ∈ κ}.
On the other hand, by the monotonicity of µ in κ, the set {µ(K ′) ⊆ K,K ′ ∈ κ} is bounded above by
µ(K), so that, sup{µ(K ′) | K ′ ⊆ K,K ′ ∈ κ} ≤ µ(K). Thus, this definition agrees with the previous
one. It follows trivially that this extension still satisfies the property µ(U1) ≤ µ(U2) if U1 ⊆ U2. Now,
for an arbitrary subset A of G , define µ(A) = inf{µ(U) | A ⊆ U,U is open in G } . Similarly as before,
this indeed is an extension of our previous definition of µ to all subsets of G . It again follows trivially
that this extension still satisfies the property that µ(A1) ≤ µ(A2) if A1 ⊆ A2. Okay, so now we will show
that µ is an outer measure on G .
Firstly, since (∅ : U) = 0 for every U ∈ U , µ(∅) = 0. Furthermore, to show that µ is nonnegative,
because of the definitions of the extensions, it suffices to show that µ is nonnegative on κ. For a fixed
K ∈ κ, the map that sends f ∈ X to f(K) is continuous by similar reasoning as before. Furthermore,
because this map is nonnegative at each µU , it follows that this map is nonnegative on each C(V ).
Thus, this map is nonnegative at µ, so that µ(K) ≥ 0. Now, we show that µ is countably subadditive.
We do it in two steps.
We first show that for each countable collection of open sets in G , {Un | n ∈ N}, we have that
µ(
⋃

n∈N Un) ≤
∑

n∈N µ(Un). Let {Un | n ∈ N} be a countable collection of open subsets of G . Let
K be a compact subset of

⋃
n∈N Un. Then, K ⊆

⋃n
k=1 Uk for some n ∈ N. Now, by Lemma 2, we

find compact sets K1, ...,Kn such that K =
⋃n

k=1Kk and Kk ⊆ Uk for 1 ≤ k ≤ n. Then, inductively,
µ(K) ≤

∑n
k=1 µ(Kk) ≤

∑n
k=1 µ(UK) ≤

∑
n∈N µ(Un). It follows that, µ(

⋃
n∈N Un)= sup{µ(K) | K ⊂⋃

n∈N Un,K ∈ κ} ≤
∑

n∈N µ(Un). Now, let {An | n ∈ N} be an arbitrary countable collection of subsets
of G . If

∑
n∈N µ(An) = ∞ then trivially µ(

⋃
n∈NAn) ≤

∑
n∈N µ(An), so suppose,

∑
n∈N µ(An) < ∞.

Let ϵ > 0, and for each n ∈ N, pick an open set Un such that An ⊆ Un and µ(Un) ≤ µ(An) +
ϵ
2n . Then,

µ(
⋃

n∈NAn) ≤ µ(
⋃

n∈N Un) ≤
∑

n∈N µ(Un) ≤
∑

n∈N µ(An) + ϵ
∑

n∈N
1
2n =

∑
n∈N µ(An) +

ϵ
2 , but since
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ϵ > 0 was arbitrary, we have that µ(
⋃

n∈NAn) ≤
∑

n∈N µ(An), which proves that µ is an outer measure.

Next we show that the collection of Caratheodory measurable sets contain the Borel subsets of G .
To show that the collection of Caratheodory measurable sets contain the Borel subsets of G , it suf-
fices to show that every open subset of G is measurable since the collection of measurable sets form
a σ-algebra, if this collection contains the topology τ of G , then it certainly contains the σ-algebra
generated by the topology τ . So let U ⊆ G be open and let A ⊆ G . If µ(A) = ∞, then trivially
µ(A) ≥ µ(A ∩ U) + µ(A ∩ UC), so we might as well assume that µ(A) < ∞. Let ϵ > 0 and pick V ⊆ G
open and such that A ⊆ V and µ(V ) ≤ µ(A) + ϵ. Let K be a compact subset of V ∩ U such that
µ(V ∩ U) − ϵ ≤ µ(K), and let L be a compact subset of V ∩ KC such that µ(V ∩ KC) − ϵ ≤ µ(L).
Since K ⊆ U, V ∩ UC ⊆ V ∩KC , so µ(V ∩ UC) − ϵ ≤ µ(V ∩KC) − ϵ ≤ µ(L). Therefore, µ(A ∩ U) +
µ(A ∩ UC) − 2ϵ ≤ µ(V ∩ U) + µ(V ∩ UC) − 2ϵ ≤ µ(K) + µ(L)= µ(K ∪ L) ≤ µ((V ∩ U) ∪(V ∩KC)
≤ µ(V ) ≤ µ(A) + ϵ. It follows that µ(A ∩ U) + µ(A ∩ UC) ≤ µ(A) + 3ϵ. Since ϵ is arbitrary, we have
that µ(A∩U) + µ(A∩UC) ≤ µ(A), and hence U is measurable. It follows that µ restricts to a measure
on the Borel subsets of G , so that it is a Borel measure (G is completely regular, as it is locally compact
Hausdorff).
Moreover, µU (K0) = 1 for each U ∈ U , and the continuous function that maps f ∈ X to f(K0) is a
constant 1 on each C(U), and in particular µ(K0) = 1, and hence µ is nonzero. Also, considering µ as an
element of X, µ is finite on compact sets. Furthermore, as by construction µ(A) = inf {µ(U) | A ⊆ U,U
is open}, µ is trivially outer regular. Similarly, µ is trivially inner regular. Hence, we showed that the
extension agreed with its definition for open sets which is by construction inner regular.
We are almost there, it remains to show thta µ is left translation invariant by the elements of G .
Fix g ∈ G . The elements x1, ..., xn generate a cover for K iff the elements gx1, ..., gxn generate a cover
of gK, so that (K : U) = (gK : U) for each U ∈ U , and hence µU (K) = µU (gK) for each U ∈ U . It
follows that the continuous function that maps f ∈ X to f(K) − f(gK) is 0 on each C(U), and hence
µ(K) = µ(gK). Thus, µ is left translation invariant, and hence a left Haar measure on G .

Proposition 1. Let G be a topological group, let µ be a Haar measure on G , and define µ′(A) = µ(A−1).
Then, µ′ is a right Haar measure if µ is a left Haar measure on G .

Proof. Suppose that µ is a left Haar measure on G . We first show that µ′ is a Borel measure on G .
Firstly, since (.)−1 : G → G is a homeomorphism, it is easy to see that A is a Borel subset of G iff A−1 is a
Borel subset of G . So, µ′ is well defined and trivially, µ′ is nonnegative and µ′(∅) = 0. Let {An | n ∈ N}
be a countable collection of pairwise disjoint measurable subsets of G , so {A−1

n | n ∈ N} is also a
countable collection of pairwise disjoint measurable subsets. Hence, µ′(

⋃
n∈NAn) = µ((

⋃
n∈NAn)

−1) =
µ(
⋃

n∈NA
−1
n ) =

∑
n∈N µ(A

−1
n ) =

∑
n∈N µ

′(An). Thus, µ
′ is a Borel measure on G .

Let K ⊆ G be compact. Then, K−1 is also compact, so µ′(K) = µ(K−1) < ∞. Let A be a measurable
subset of G , A−1 ⊆ U and U is open iff A ⊆ U−1 and U−1 is open, so that {µ(U) | A−1 ⊆ U,U is
open}={µ(U−1) | A ⊆ U,U is open}. Then, µ′(A)=inf {µ(U) | A−1 ⊆ U,U is open}=inf{µ(U−1) | A ⊆
U,U is open}=inf{µ′(U) | A ⊆ U,U is open}. Similarly for A open, µ′(A)=sup{µ′(K) | K ⊆ K,K is
compact} and hence, µ′ is regular.
Finally, since µ is nonzero, µ′ is nonzero as well. Also, µ′(Ag) = µ((Ag)−1) = µ(g−1A−1) = µ(A−1) =
µ′(A). Therefore, µ′ is a right Haar measure of G .
This proposition tells us that, while left and right Haar measure on a group may be different, they are
related in a simple manner, and so we may as well simply concern ourselves with the study of one or the
other.
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The Uniqueness

Lemma 3. Let G be a locally compact topological group and let f ∈ Cc(G ). Then, for every ϵ > 0, there
is an open neighborhood U of the identity such that whenever y ∈ xU , it follows that | f(x)− f(y) |< ϵ.

Proof. Define K = supp[f ]. Let ϵ > 0. By continuity of f , for each x ∈ K, we may find an open
neighborhood Ux of the identity such that whenever y ∈ xUx, it follows that | f(y) − f(x) | < ϵ.
Then, for each x ∈ K, choose another open neighborhood of the identity Vx such that VxVx ⊆ Ux. By
compactness of K, there is a finite number of x1, ..., xn such that K ⊆ ∪n

k=1xkVxk
. Define V = ∩n

k=1Vxk

and define U = V ∩V −1. U is clearly an open neighborhood of the identity, and we claim that this might
be our required neighbourhood. Let y ∈ xU . If x, y /∈ K, then | f(x)−f(y) | = 0, and so there is nothing
to worry about, so we may assume that either x ∈ K or y ∈ K. First suppose that x ∈ K. Because
x ∈ K, it follows that x ∈ xkVxk

for some 1 ≤ k ≤ n, and hence that x ∈ xkUxk
. On the other hand,

because x ∈ xkVxk
and V ⊆ Vxk

, it follows that y ∈ xV ⊆ xkVxk
Vxk

⊆ xkUxk
. Thus, | f(x) − f(y) | ≤

| f(x)− f(xk) | + | f(xk)− f(y) | < 2ϵ. Now let us suppose that y ∈ K. Now, y = xu for some u ∈ U ,
so x = yu−1. But U = V ∩ V −1, so u−1 ∈ U , so that x ∈ yU . Then, we have that y ∈ K and x ∈ yU , so
we may give similar argument as in the previous paragraph by interchanging the roles of x and y.

Lemma 4. Let (X,
∑
, µ) be a measure space, let f : X → R be measurable, and let A ⊆ X be measurable.

Then, if A = {x ∈ X | f(x) > 0} and µ(A) > 0, there is some a > 0 such that µ({x ∈ A | f(x) ≥ a}) > 0.

Proof. Suppose A = {x ∈ X | f(x) > 0} and µ(A) > 0. Suppose that, for all a > 0, µ(x ∈ A | f(x) ≥ a)
= 0. We denote, Sn = {x ∈ A | f(x) ≥ 1

2n}. Then, A = ∪n∈NSn, so µ(A) ⩽
∑

n∈N = 0, implying µ(A)
= 0, a contradiction. Thus, there is some a > 0 such that µ({x ∈ A | f(x) ≥ a}) > 0.

Theorem 2. Let G be a locally compact topological group, and let µ and µ′ be two left Haar measures
on G . Then, µ = aµ′ for some a > 0, a ∈ R.

Proof. Firstly, because µ is nonzero, there is some set of nonzero measure. It follows from the outer
regularity of µ that there is some open set, containing this set that is also of positive measure, and by
the inner regularity of µ, it follows that there is a compact set of nonzero measure contained in this
open set, we call it K. Now, let f ∈ Cc(G ) be nonnegative and non-vanishing. Define U = f−1(R>0).
U is nonempty because f is not identically 0. By continuity, U is open, so because K is compact
and U is nonempty, there is a finite number of elements g1, ..., gn in G such that K ⊆ ∪n

k=1gkU , so
that 0 < µ(K) ≤

∑n
k=1 µ(gkU) = nµ(U), so that µ(U) > 0. Then, by Lemma 4, it follows that

there is some a > 0 such that, V = {g ∈ G | f(g) ≥ a} is of positive measure. It follows that∫
G
fdµ ⩾

∫
V
fdµ ⩾ aµ(V ) > 0.

Let g ∈ Cc(G ) be nonnegative and non-vanishing, and let f ∈ Cc(G ) be arbitrary. g will remain the same

throughout the remainder of the proof. Define, h(x, y) = f(x)g(yx)∫
G

g(tx)dµ′(t)
, clearly the denominator never

vanishes, and so h is well-defined on all of G ×G . Trivially, h is compactly supported because both f and g
are compactly supported. Now, to show that h is continuous, it suffices to show that I(x) ≡

∫
G g(tx)dµ

′(t)
is a continuous function. Define K = supp[g], let x0 ∈ G , and let U be an open neighborhood of x0

whose closure is compact which exists because G is locally compact and Hausdorff. K ×U
−1

is compact

by Tychonoff’s Theorem, so KU
−1

is compact because this is the image of K ×U
−1

under a continuous

function. Let ϵ > 0, and choose δ > 0, so that δµ′(KU
−1

) < ϵ, which we may do because KU
−1

is
compact, and hence of finite measure. By Lemma 3, there is an open neighborhood V of the identity
such that whenever y ∈ xV , it follows that | g(x)− g(y) | < δ. Then, whenever x ∈ U ∩ x0V , an open

neighborhood of x0, tx ∈ tx0V , so that, | I(x)− I(x0) |≤
∫

G | g(tx)− g(tx0) | dµ′(t) ≤ δµ′(KU
−1

) < ϵ,

where we have used the fact that integrand vanishes for t outside of KU
−1

. Thus, I is continuous, and
hence h is continuous, and hence h ∈ Cc(G ×G ). By a generalization of Fubini’s Theorem, we have that,∫

G

[ ∫
G

h(x, y)dµ′(y)

]
dµ(x) =

∫
G

[ ∫
G

h(x, y)dµ(x)

]
dµ′(y)

=

∫
G

[ ∫
G

h(y−1x, y)dµ(x)

]
dµ′(y)

=

∫
G

[ ∫
G

h(y−1x, y)dµ′(y)

]
dµ(x)

=

∫
G

[ ∫
G

h(y−1, xy)dµ′(y)

]
dµ(x).
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Thus,

∫
G

f(x)dµ(x) =

∫
G

[
f(x)

∫
G g(yx)dµ

′(y)∫
G g(tx)dµ

′(t)

]
dµ(x)

=

∫
G

[ ∫
G

f(x)g(yx)∫
G g(tx)dµ

′(t)
dµ′(y)

]
dµ(x)

=

∫
G

[ ∫
G

h(x, y)dµ′(y)

]
dµ(x)

=

∫
G

[ ∫
G

h(y−1, xy)dµ′(y)

]
dµ(x)

=

∫
G

[ ∫
G

f(y−1)g(x)∫
G g(ty

−1)dt
dµ′(y)

]
dµ(x)

= (

∫
G

g(x)dµ(x))(

∫
G

f(y−1)∫
G g(ty

−1)dµ′(t)
dµ′(y))

Thus,
∫

G
f(x)dµ(x)∫

G
g(x)dµ(x)

= C, where C is some constant independent of µ.

Now, since this constant does not depend on µ, we must have,
∫

G
fdµ∫

G
gdµ

= C =
∫

G
fdµ′∫

G
gdµ′ and hence,

∫
G fdµ

′

= a
∫

G fdµ, where a =
∫

G
gdµ′∫

G
gdµ

. Finally, for f ∈ Cc(G ), define, ϕ(f) =
∫

G fdµ and ψ(f) =
∫

G fdν,

where ν is a measure defined by ν = 1
aµ′ . Both ϕ and ψ are positive linear functions on Cc(G ), and

ϕ(f) =
∫

G fdµ = 1
a

∫
G fdµ

′ =
∫

G fdν = ψ(f). Thus, Thus, by the Riesz Representation Theorem, it
follows that µ = ν, i.e. µ′ = aµ with a ∈ R, a > 0.

This theorem tells us that left Haar measure on G is essentially unique, in the sense that any two left
Haar measures differ only by a positive multiplicative constant.
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