
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Simplicial Homotopy Type Theory
An introduction to the Category Theory of Segal types

Arghan Dutta
Advisor: Professor Siddhartha Gadgil

Indian Institute of Science

11th December 2023

Arghan Dutta (Indian Institute of Science) Simplicial Homotopy Type Theory 11th December 2023 1 / 42



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Contents

1 Introduction

2 Background of HoTT

3 Reedy model structure

4 Type theory with shapes

5 Equivalences involving extension types

6 Theory of Segal types

Arghan Dutta (Indian Institute of Science) Simplicial Homotopy Type Theory 11th December 2023 2 / 42



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction

1,2,3,...,∞-category

• How to think about an ∞-category?

In addition to the objects and arrows in an ordinary category, which we think of 0
and 1-dimensional, we have arrows between arrows, which we think of as
inhabiting the 2-dimensional space. Then we have arrows between, arrows
between arrows inhabiting the 3-dimensional space and so on.

• What is the fundamental challenge with such an object?

The challenge in defining ∞-categories has to do with giving a precise
mathematical meaning of the notion of a weak composition law, not just for the
1-morphisms but also for the morphisms in higher dimensions. While proving
theorems about ∞-categories, we need to first pick a specific definition, like
choosing coordinates and prove theorems with reference to that definition, thereby
providing a translation problem.
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Introduction

1,2,3,...,∞-category

Few examples of models of ∞-categories are: simplicial categories,
quasi-categories, Segal categories, complete Segal spaces.

• Is there any way out of this compatibility issue?

This is a very recent approach by Riehl and Verity where an ∞-category is thought
of living in their own category, the category of all ∞-categories, the ∞-cosmos.
The strategy is to prove theorems about ∞-cosmos in general and then they
specialize to give the theorems about ∞-categories proven in absolutely every
model, that apply universally.

Our goal is to give a model independent definition of an ∞-category by extending
the theory obtained by adjoining bunch of new axioms and techniques to type
theory, called homotopy type theory (HoTT).
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Background of HoTT

HoTT = Homotopy theory + Type theory

• What is Homotopy Type Theory (HoTT)?

Homotopy type theory (HoTT) is a new subject that augments Martin-Löf
intensional dependent type theory (MLTT) with additional rules and axioms
enabling it to be used as a formal language for reasoning about homotopy theory.
HoTT provides a synthetic framework that is suitable for developing the theory of
mathematical objects with natively homotopical content.

• But, where does this homotopy perspective come from?

In HoTT, we regard the types as spaces (as studied in homotopy theory) or higher
groupoids (as studied in higher category theory), and the logical constructions
(such as the product A×B) as homotopy-invariant contructions on these spaces.
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Background of HoTT

Where is Homotopy in HoTT?

To briefly explain this perspective, consider first the basic concept of type theory,
namely that the term a is of type A, which is written:

a : A
In HoTT, we think of it as:

“a is a point of the space A”

Similarly, every function f : A→ B in type theory is regarded as a continuous
map from the space A to the space B.

Now, the key idea of the homotopy interpretation is that the logical notion of
equality, identity type a =A b of two terms a, b : A of the same type A can be
understood as the existence of a path p : a⇝ b from point a to point b in the
space A. This also means that two functions f, g : A→ B can be identified if
they are homotopic, since a homotopy is just a (continuous) family of paths
px : f(x)⇝ g(x), one for each x : A.
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Background of HoTT

Types as groupoids

The first natural, non-trivial semantics for intensional type theory were developed
by Hofmann and Streicher in their disproof of the uniqueness of identity proofs
(UIP) using groupoids.

Intuitively, the identity type over a groupoid G is
interpreted as the discrete groupoid Arr(G) of arrows in G, so that an identity
witness f : a =A b becomes an arrow f : a→ b in G.

However, unlike in type theory, these cannot in turn be further related by identity
terms of higher type f =(a=Ab) g, since a (conventional) groupoid generally has
no such higher-dimensional structure.

Thus the groupoid semantics validates a certain truncation principle, stating that
all higher identity types are trivial, a form of extensionality one dimension up.
The groupoid laws for the identity types are strictly satisfied in these models,
rather than holding only up to propositional equality.
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rather than holding only up to propositional equality.
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Types as groupoids
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Background of HoTT

Types as ∞-groupoids

This situation suggests the use of the higher-dimensional analogues of groupoids,
as formulated in homotopy theory, in order to provide models admitting non-trivial
higher identity types.

Such structures indeed occurs naturally , we recall that every topological space
has a fundamental ∞-groupoid, Π∞.

• How can we have a similar semantics for a type in HoTT?

In HoTT, each type A can be seen to have the structure of an ∞-groupoid. We
can iterate the identity type: we can form the type p =(x=Ay) q of identifications
between identifications p, q, and the type r =(p=(x=Ay)

q) s, and so on. The
structure of this tower of identity types corresponds precisely to that of the
continuous paths and higher dimensional homotopies between them in a space, or
an ∞-groupoid.
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Background of HoTT

HoTT as a synthetic foundation

• Why is HoTT synthetic in nature?

Unlike in classical homotopy theory, where one studies spaces analytically, i.e, with
the help of a topology, simplicial sets, or any other combinatorial gadget, in HoTT
the notions of points, paths, and paths between paths are basic, indivisible and
primitive.

Thus, HoTT can be viewed as a synthetic theory of ∞-groupoids.

As a result, HoTT serves as a presentation of ∞-groupoids in different homotopy
theoretic models. One such classic model is the Voevodsky’s simplicial set model
in which types are regarded as Kan complexes in the Quillen model structure. In
this interpretation, the identity type a =K b of any two points a, b in a Kan
complex K is itself a Kan complex.
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Background of HoTT

Homotopical trinitarianism?

Homotopical mathematics

HoTT Higher categories

formalize internalize

interpret

Homotopical mathematics

HoTT Higher categories

category of structuressynthetic theory

internal logic
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Background of HoTT

Aim

• Can HoTT be viewed as a tool to synthetically study higher categories in
general?

Riehl and Shulman introduced a new type theory by adding to HoTT a strict
interval object and the novel idea, due to Shulman and Lumsdaine, of a new type
former called extension type. We call this simplicial homotopy type theory
(sHoTT).

We interpret HoTT in the Reedy model structure on bisimplicial sets and
internally identify some types that correspond to some bisimplicial sets of interest.

Types Types with Composition and Univalence

Set∆op×∆op Reedy Segal Rezk

Bisimplicial Sets Types with Composition
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Reedy model structure

Reedy model structure on Fun(C,M)

Let C be a Reedy category and M be a model category, then the functor category
Fun(C,M) has a model structure in which a map A→ B is

• A weak equivalence iff Ax → Bx is a weak equivalence in M for all x ∈ C.
• A cofibration iff the induced map Ax tLxA LxB → Bx is a cofibration in M for
all x ∈ C
• A fibration iff the induced map Ax → Bx ×MxB MxA is a fibration in M for all
x ∈ C.

We have the external product bifunctor sSet × sSet □−→ ssSet, defined as
(A□B)m,n := Am ×Bn which is biclosed. In particular, we have the adjoint pair

sSet ⊥ ssSet

A□ _

{A, _}
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Reedy model structure

Weighted limit

Definition 3.1 (Weighted limit)
Given a simplicial object X in a locally small category M and a simplicial set S,
define the weighted limit {S,X} to be an object in M equipped with an
isomorphism

HomM( _, {S,X}) ∼= HomsSet(S,HomM( _, X))
of functors Mop → Set.

In particular, if M = sSet, then

HomsSet(S, {∆m, X}) ∼= HomsSet(∆
m,HomsSet(S,X))

HomsSet(S, {∆m, X}) ∼= HomsSet(S,X( _, [m]))

{∆m, X} ∼= X( _, [m])

We denote X( _, [m]) by Xm, the mth column of X.
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define the weighted limit {S,X} to be an object in M equipped with an
isomorphism

HomM( _, {S,X}) ∼= HomsSet(S,HomM( _, X))
of functors Mop → Set.

In particular, if M = sSet, then

HomsSet(S, {∆m, X}) ∼= HomsSet(∆
m,HomsSet(S,X))

HomsSet(S, {∆m, X}) ∼= HomsSet(S,X( _, [m]))

{∆m, X} ∼= X( _, [m])

We denote X( _, [m]) by Xm, the mth column of X.
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Reedy model structure

Fibration vs Fibrant

Definition 3.2 (Reedy fibration)
A morphism X → Y is a Reedy fibration if and only if for all m ⩾ 0 the induced
map

{∆m, X} → {∂∆m, X} ×{∂∆m,Y } {∆m, Y }
on weighted limits is a Kan fibration in sSet.

In the bisimplicial sets model, a dependent type family C : A→ U is modeled by a
Reedy fibration C ↠ A.

Definition (Reedy fibrant)
A bisimplicial set X is Reedy fibrant just when the unique map X → 1 is a Reedy
fibration, which is the case when

{∆m, X} → {∂∆m, X}
is a Kan fibration.

In the bisimplicial sets model, a type is modeled by a Reedy fibrant bisimplicial set.
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Reedy model structure

Pullback power axiom

Lemma 3.4 (Pullback power axiom)
If i : U → V is a cofibration and p : X ↠ Y is a Reedy fibration then the map

〈Xi, pV 〉 : XV → XU ×Y U Y V ,
which we denote by {̂i, p}, is a Reedy fibration, whose domain and codomain are
Reedy fibrant if X and Y are, and which is a weak equivalence if p is.

Proof. The key here is to use the equivalence of pullback power axiom and the
pushout product axiom. We show that if i : U → V and j : A→ B are
cofibrations of bisimplicial sets, then i×̂j is cofibration that is trivial if j is.

U ×A V ×A

U ×B ⋆

V ×B

i×1A

1U×j k 1V ×j

i×1B

i×̂j
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Reedy model structure

Segal space

Definition 3.5 (Segal space)
A Reedy fibrant bisimplicial set X is a Segal space if and only if for all m ⩾ 2 and
0 < i < m the induced map,

{∆m, X} → {Λmi , X}
on weighted limits is a trivial fibration in sSet.

Theorem 3.6 (Shulman)
The Reedy model structure on bisimplicial sets defined relative to the Quillen
model structure on simplicial sets models intensional type theory with dependent
sums, dependent products, identity types, and as many univalent universes as
there are inaccessible cardinals greater than ℵ0.
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Reedy model structure

How to internalize the concept of arrows?

The fundamental structure we add to our HoTT is a directed interval type, which,
thinking categorically, we denote 2.

As it does in ordinary category theory, the
directed interval detects arrows representably, i.e., for any type A the function
type 2 → A is the type of arrows in A.

• But, how can one talk about the dependent type of arrows from x to y,
for x, y : A?

One natural way is to define this type internally by,

homA(x, y) :=
∑

f :2→A

(x =A f(0))× (f(1) =A y)

But these equalities are then data, which have to be carried around everywhere.
This is quite tedious, and the technicalities become nearly insurmountable when
we come to define commutative triangles and commuatative squares.
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Reedy model structure

How to internalize the concept of arrows?

• So, why not define homA(x, y) to be the type of functions f : 2 → A such
that x ≡ f(0) and f(1) ≡ y?

The first problem is that judgmental equality on A is interpreted by the diagonal
A→ A×A, which is usually not a fibration, unlike the path-object PA→ A×A,
which interprets the identity type, is a fibration.

However, since 2 → 2 is a cofibration and A→ 1 is a fibration, we obtain that the
pullback corner map A2 → A×A is a fibration, which represents the the desired
type family homA : A×A→ U .

We instead use a more refined approach where we have a judgemental notion of
cofibration, and a new type former called an extension type: if i : A↣ B is a
cofibration and C : B → U is a type family with a section d :

∏
x:A C(i(x)), then

there is a type
〈∏

y:B C(y)
∣∣∣i
d

〉
of dependent functions f :

∏
y:B C(y) such that

f(i(x)) ≡ d(x) for all x : A.
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Type theory with shapes

The cube layer

Concretely, sHoTT is built as a three layer type theory: The first layer is the
coherent theory of cubes with finite products of cubes and an axiomatic cube 2
with no other data.

So here is our first layer: the layer of cubes

1 cube 2 cube
I cube J cube
I × J cube

(t : I) ∈ Ξ

Ξ ` t : I Ξ ` ⋆ : I

Ξ ` s : I Ξ ` t : J
Ξ ` 〈s, t〉 : I × J

Ξ ` t : I × J

Ξ ` π1(t) : I
Ξ ` t : I × J

Ξ ` π2(t) : J

Here Ξ is a context of variables belonging to cubes, and 1 denotes the empty
product.
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Type theory with shapes

The tope layer

The second layer is an intuitionistic logic over the layer of cubes. We refer to its
types as topes admitting finite conjunction and disjunction, but not negation,
implication, or either quantifier.

Here is our second layer: the layer of topes

ϕ ∈ Φ

Ξ | Φ ` ϕ Ξ ` > tope Ξ | Φ ` > Ξ ` ⊥ tope
Ξ | Φ ` ⊥
Ξ | Φ ` ψ

Ξ ` ϕ tope Ξ ` ψ tope
Ξ ` (ϕ ∧ ψ) tope

Ξ | Φ ` ϕ Ξ | Φ ` ψ
Ξ | Φ ` ϕ ∧ ψ

Ξ | Φ ` ϕ ∧ ψ
Ξ | Φ ` ϕ

Ξ | Φ ` ϕ ∧ ψ
Ξ | Φ ` ψ

Ξ ` ϕ tope Ξ ` ψ tope
Ξ ` (ϕ ∨ ψ) tope

Ξ | Φ ` ϕ
Ξ | Φ ` ϕ ∨ ψ
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Type theory with shapes

The tope layer

Ξ | Φ ` ψ
Ξ | Φ ` ϕ ∨ ψ

Ξ | Φ, ϕ ` χ Ξ | ϕ, ψ ` χ Ξ | Φ ` ϕ ∨ ψ
Ξ | Φ ` χ

Ξ ` s : I Ξ ` t : I
Ξ ` (s ≡ t) tope

Ξ ` s : I
Ξ | Φ ` (s ≡ s)

Ξ | Φ ` (s ≡ t)

Ξ | Φ ` (t ≡ s)

Ξ | Φ ` (s ≡ t) Ξ | Φ ` (t ≡ v)

Ξ | Φ ` (s ≡ v)

Ξ ` t : I
Ξ | Φ ` t ≡ ⋆

Ξ | Φ ` (s ≡ t) Ξ, x : I ` ψ tope Ξ | Φ ` ψ[s/x]
Ξ | Φ ` ψ[t/x]

Ξ ` s : I Ξ ` t : J
Ξ | Φ ` π1(〈s, t〉) ≡ s

Ξ ` s : I Ξ ` t : J
Ξ | Φ ` π2(〈s, t〉) ≡ t

Ξ ` t : I × J

Ξ | Φ ` t ≡ 〈π1(t), π2(t)〉

Here Φ is a list of topes, and ≡ is an equality tope.
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Type theory with shapes

Shapes as special types

A shape will mean a cube together with a tope in the corresponding singleton
context:

I cube t : I ` ϕ tope
{t : I | ϕ} shape

Some most relevant shapes for us will be the n-simplices, their boundaries and
their horns.

∆0 := {t : 1 | >}
∆1 := {t : 2 | >}
∆2 := {〈t1, t2〉 : 2 × 2 | t2 ⩽ t1}
∆3 := {〈t1, t2, t3〉 : 2 × 2 × 2 | t3 ⩽ t2 ⩽ t1}
∂∆1 := {t : 2 | (t ≡ 0) ∨ (t ≡ 1)}
∂∆2 := {(t1, t2) : ∆2 | (0 ≡ t2 ⩽ t1) ∨ (t1 ≡ t2) ∨ (t2 ⩽ t1 ≡ 1)}
Λ2
1 := {〈t1, t2〉 : 2 × 2 | t1 = 1 ∨ t2 = 0}
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Type theory with shapes

Extension type
Finally, there is a third layer of types that has all the ordinary type formers of
HoTT and one additional type former, the extension type.

{t : I | ϕ} shape {t : I | ψ} shape t : I | ϕ ` ψ
Ξ | Φ ` Γ ctx Ξ, t : I | Φ, ψ | Γ ` A type Ξ, t : I | Φ, ϕ | Γ ` a : A

Ξ | Φ | Γ `
〈∏

t:I|ψ A
∣∣ϕ
a

〉
type

Ξ, t : I | Φ, ψ | Γ ` b : A Ξ, t : I | Φ, ϕ | Γ ` b ≡ a

Ξ | Φ | Γ ` λtI|ψ.b :
〈∏

t:I|ψ A
∣∣ϕ
a

〉

Ξ | Φ | Γ ` f :
〈∏

t:I|ψ A
∣∣ϕ
a

〉
Ξ ` s : I Ξ | Φ ` ψ[s/t]

Ξ | Φ | Γ ` f(s) : A
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Type theory with shapes

Extension type

Ξ ` s : I Ξ | Φ ` ϕ[s/t]
Ξ | Φ | Γ ` f(s) ≡ a[s/t]

Ξ ` s : I Ξ | Φ ` ψ[s/t]
Ξ | Φ | Γ ` (λtI|ψ.b)(s) ≡ b[s/t]

We can think of {t : I | ϕ} as a sub-shape of {t : I | ψ} and read the judgment
Ξ, t : I | Φ, ϕ | Γ ` a : A as a function ϕ→ A, we could represent a point in an
extension type with a dashed arrow in the commutative diagram:

ϕ A

ψ

a
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Equivalences involving extension types

Equivalences involving extension types

Just like for ordinary and dependent function types, where we have,(∏
x:X

∏
y:Y Z(x, y)

)
'
(∏

y:Y

∏
x:X Z(x, y)

)
.

The following theorem is an analogue for extension types.

Theorem 5.1 (Commutation and currying)
If t : I | ϕ ` ψ and X : U , while Y : {t : I | ψ} → X → U and
f :
∏
t:I|ϕ

∏
x:X Y (t, x), then〈∏

t:I|ψ

(∏
x:X Y (t, x)

)∣∣ϕ
f

〉
'
∏
x:X

〈∏
t:I|ψ Y (t, x)

∣∣ϕ
λt.f(t,x)

〉
.

Proof . From left to right g 7→ λx.λt.g(t, x), and from right to left
h 7→ λt.λx.h(x, t). If g(t) ≡ f(t) assuming ϕ, then g(t, x) ≡ f(t, x) assuming ϕ.
For the reverse direction, using η-conversion, if h(x, t) ≡ f(t, x) assuming ϕ, then
λt.λx.h(x, t) ≡ λt.λx.f(t, x) ≡ f assuming ϕ.
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Equivalences involving extension types

Equivalences involving extension types

Theorem 5.2 (Pushout product)
If t : I | ϕ ` ψ and s : J | χ ` ζ, while X : {t : I | ψ} → {s : J | ζ} → U and
f :
∏
<t,s>:I×J|(ϕ∧ζ)∨(ψ∧χ)X(t, s), then〈∏

t:I|ψ

〈∏
s:J|ζ X(t, s)

∣∣∣χ
λs.f(t,s)

〉∣∣∣ϕ
λt.λs.f<t,s>

〉
'
〈∏

<t,s>:I×J|ψ∧ζ X(t, s)
∣∣∣(ϕ∧ζ)∨(ψ∧χ)

f

〉
'
〈∏

s:J|ζ

〈∏
t:I|ψX(t, s)

∣∣∣ϕ
λs.f(t,s)

〉∣∣∣χ
λt.λs.f<t,s>

〉
.

The shape {〈t, s〉 : I × J | (ϕ ∧ ζ) ∨ (ψ ∧ χ)} may be called the pushout product
of the two inclusions {t : I | ϕ} ⊆ {t : I | ψ} and {s : J | χ} ⊆ {s : J | ζ}. The
dashed arrow in the diagram may be called the pushout product map.
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Equivalences involving extension types

Equivalences involving extension types

Consider the pushout square,

ψ ∧ ζ

(ϕ ∧ ζ) ∨ (ψ ∧ χ) ϕ ∧ ζ

ψ ∧ χ ϕ ∧ χ

The first and the third is just application and re-abstraction. For the first with the
second, we perform currying, i.e., from left to right λt.λs.f〈t, s〉 7→ λ〈t, s〉.f〈t, s〉
and right to left λ〈t, s〉.f〈t, s〉 7→ λt.λs.f〈t, s〉. Similarly, the second and the third
are equivalent.
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Equivalences involving extension types

Equivalences involving extension types

Theorem 5.3 (Principle of choice)
If t : I | ϕ ` ψ, while X : {t : I | ψ} → U and Y :

∏
t:I|ψ(X → U), while

a :
∏
t:I|ϕX(t) and b :

∏
t : I | ϕY (t, x(t)), then〈∏

t:I|ψ

(∑
x:X(t) Y (t, x)

)∣∣∣ϕ
λt.(a(t),b(t))

〉
'∑

f :
〈∏

t:I|ψ X(t)
∣∣ϕ
a

〉 〈∏
t:I|ψ Y (t, f(t))

∣∣ϕ
b

〉
.

P roof. As in the ordinary case, this is just composing the introduction and
elimination rules. Again, from left to right, h 7→ (λt.π1(h(t)), λt.π2(h(t))) and
from right to left, (f, g) 7→ λt.(f(t), g(t)). The β-reduction and η-expansion rules
make these inverse equivalences.
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Equivalences involving extension types

Equivalences involving extension types

Theorem 5.4 (Composition)
Suppose t : T | ϕ ` ψ and t : I | ψ ` χ, and that X : {t : I | χ} → U and
a :
∏
t:I|ϕX(t). Then,

〈∏
t:I|χX

∣∣ϕ
a

〉
'
(∑

f :
〈∏

t:I|χX
∣∣ϕ
a

〉 〈∏
t:I|χX

∣∣ψ
f

〉)
.

Proof. From left to right, h 7→ (λt.h(t), λt.h(t)) and from right to left,
(f, g) 7→ λt.g(t).

Theorem 5.5 (Union)
Suppose t : I ` ϕ tope and t : I ` ψ tope, and that we have
X : {t : I | ϕ ∨ ψ} → U and a :

∏
t:I|ψX(t). Then,〈∏

t:I|ϕ∨ψX
∣∣ψ
a

〉
'
〈∏

t:I|ϕX
∣∣ϕ∧ψ
λt.a(t)

〉
.

Proof. Again, frpm left to right, we re-package, h 7→ λt.h(t). From right to left,
g 7→ λt.recϕ,ψ∨ (g(t), a(t)), is well defined since g(t) ≡ a(t) for t : I satisfying
ϕ ∧ ψ.
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Equivalences involving extension types

Equivalences involving extension types

Now, we introduce the function extensionality for extension types. Before doing
that, let us recall the three equivalent formulations of function extensionality for
ordinary dependent functions:

• For f, g :
∏
x:AB(x) if

∏
x:A(fx = gx), then f = g.

• For f, g :
∏
x:AB(x), the canonical map (f = g) →

∏
x:A(fx = gx) is an

equivalence.
• If each B(x) is contractible, then so is

∏
x:AB(x).

Axiom 6.5 (Relative functional extensionality)
Supposing t : I | ϕ ` ψ and that A : {t : I | ψ} → U is such that each A(t) is
contractible, and moreover a :

∏
t:I|ϕA(t), then

〈∏
t:I|ψ a(t)

∣∣∣ϕ
a

〉
is contractible.
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Equivalences involving extension types

Equivalences involving extension types

Proposition 5.6 (Homotopy extension property)
Let t : I | ϕ ` ψ. Assuming the relative function extensionality, if we have
A : {t : I | ψ} → U and b :

∏
t:I|ψ A(t), and moreover a :

∏
t:I|ϕA(t) and

e :
∏
t:I|ϕ a(t) = b(t), then we have a′ :

〈∏
t:I|ψ A(t)

∣∣ϕ
a

〉
and

e′ :
〈∏

t:I|ψ a
′(t) = b(t)

∣∣ϕ
e

〉
.

Proof. The extension type
〈∏

t:I|ψ

(∑
y:A(t)(y = b(t))

)∣∣∣ϕ
λt.(a(t),e(t))

〉
is

contractible by the axiom of relative function extensionality, hence inhabited.
Finally, we obtain a′ and e′ by applying Theorem 5.3.
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Theory of Segal types

Arrows as terms of extension type

Definition 6.1 (Directed hom-type)
Given x, y : A, determining a term [x, y] : A in context ∂∆1, we define,

homA(x, y) :=
〈
∆1 → A

∣∣∣∂∆1

[x,y]

〉

We refer to an element of homA(x, y) as an arrow from x to y in A. Every
f : homA(x, y) is a kind of function from 2 to A, with the property that f(0) ≡ x
and f(1) ≡ y.

Definition 6.2 (Composition type)
Given x, y, z : A and f : homA(x, y), g : homA(y, z) and h : homA(x, z) we have
an induced term [x, y, z, f, g, h] : A in context ∂∆2, and an extension type that
we denote,

hom2
A

(
y

x z

gf

h

)
:=
〈
∆2 → A

∣∣∣∂∆2

[x,y,z,f,g,h]

〉
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We refer to an element of homA(x, y) as an arrow from x to y in A. Every
f : homA(x, y) is a kind of function from 2 to A, with the property that f(0) ≡ x
and f(1) ≡ y.

Definition 6.2 (Composition type)
Given x, y, z : A and f : homA(x, y), g : homA(y, z) and h : homA(x, z) we have
an induced term [x, y, z, f, g, h] : A in context ∂∆2, and an extension type that
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hom2
A

(
y

x z

gf

h

)
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〈
∆2 → A

∣∣∣∂∆2

[x,y,z,f,g,h]
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Theory of Segal types

Segal types are special

Definition 6.3 (Segal type)
A Segal type is a type A such that for all x, y, z : A and f : homA(x, y) and
g : homA(y, z) the type, ∑

h:homA(x,z)

hom2
A

(
y

x z

gf

h

)
is contractible.

In particular, the above type is inhabited, and the first component of this
inhabitant is denoted by g ◦ f : homA(x, z), the composite of g and f . The
second component of this inhabitant is a 2-simplex in hom2

A(f, g, g ◦ f), denoted
by compg,f . One can reformulate the above type as a single extension type of
functions ∆2 → A that restrict to f and g on

Λ2
1 = {〈s, t〉 : 2 × 2 | s ≡ 1 ∨ t ≡ 0}
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Theory of Segal types

Does Segal types ↔ Segal spaces really?

Theorem 6.4 (Filling of 2-dimensional horns)
A type A is Segal if and only if the restriction map,

(∆2 → A) → (Λ2
1 → A)

is an equivalence.

Proof . By theorem 5.5, to extend a map Λ2
1 → A to ∂∆2 is equivalent to

extending its restriction to ∂∆1
1 to ∆1

1 := {〈s, t〉 : 2 × 2 | s = t}.

∑
h:

〈
∆1→A|∂∆

1

[x,z]

〉
〈
∆2 → A

∣∣∣∂∆2

[x,y,z,f,g,h]

〉
'

∑
l:

〈
∂∆2→A|Λ

2
1

[x,y,z,f,g]

〉
〈
∆2 → A

∣∣∣∂∆2

l

〉
'

〈
∆2 → A

∣∣∣Λ2
1

[x,y,z,f,g]

〉
. Using 5.4, (∆2 → A) '

∑
k:Λ2

1→A

〈
∆2 → A|Λ

2
1

k

〉
.

Since the projection from a total space is an equivalence exactly when all the
fibers are contractible, the result follows.
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Theory of Segal types

Segal types as ∞-categories

Corollary 6.5
If X is either a type or a shape and A : X → U is such that each A(x) is a Segal
type for all x : X, then the dependent function type

∏
x:X A(x) is a Segal type.

Proof . By the rearrangement of function types, we have
(∆2 →

∏
x:X A(x)) '

∏
x:X(∆2 → A(x)) and similarly for Λ2

1. Finally, relative
function extensionality axiom and the theorem 6.4 does the trick.

Definition 6.6 (Identity)
For any x : A, define a term idx : homA(x, x) by idx(s) ≡ x for all s : 2.

Proposition 6.7 (Unit law)
If A is a Segal type with terms x, y : A, then for any f : homA(x, y) we have
idy ◦ f = f and f◦ idx = f .
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Theory of Segal types

Segal types as ∞-categories

Proof . For any f : homA(x, y) we have a canonical 2-simplex:

λs, t.f(s) :

(
y

x y

idyf

f

)

To check that this has the right boundary, we see that (s, 0) 7→ f(s) and
(s, s) 7→ f(s), while (1, t) 7→ f(1) = y. Thus, by uniqueness of composites,
idy ◦ f = f . Similarly, f◦ idx = f .

Proposition 6.8 (Associativity)
If A is Segal type with terms x, y, z, w : A, then for any f : homA(x, y),
g : homA(y, z), h : homA(z, w) we have (h ◦ g) ◦ f = h ◦ (g ◦ f).

Proof . The type
∑

p:homA2 (f,h)

hom2
A2

(
g

f h

comph,gcompg,f

p

)
is contractible,

hence inhabited.
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Theory of Segal types

Segal types as ∞-categories

y

x comp comp w

z

h◦g

g

f

g◦f h

y

x z

z

y w

g

g

f

f

m′

h

hg

y

s

x w

r′

z

h◦gf

g◦f

m′

h

The second component of the inhabitant is a 2-simplex witness ∆2 × 2 → A.

Now think of the function λ(t1, t2, t3).((t1, t3), t2) : ∆3 → ∆2 × 2 picking out the
middle shuffle of the prism. Identifying the faces with restrictions,
λ(s, t).(s, s, t) : ∆2 → ∆3 and λ(s, t).(s, t, t) : ∆2 → ∆3, with the common edge
λt.(t, t, t) : ∆1 → ∆3.
This edge defines an inhabitant m′ : homA(x,w), while the pair of 2-simplices
define witnesses that m′ is the composite of h ◦ g and f , and that m′ is the
composite of h and g ◦ f , respectively. In particular, (h ◦ g) ◦ f = h ◦ (g ◦ f).
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Segal types as ∞-categories
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The second component of the inhabitant is a 2-simplex witness ∆2 × 2 → A.
Now think of the function λ(t1, t2, t3).((t1, t3), t2) : ∆3 → ∆2 × 2 picking out the
middle shuffle of the prism. Identifying the faces with restrictions,
λ(s, t).(s, s, t) : ∆2 → ∆3 and λ(s, t).(s, t, t) : ∆2 → ∆3, with the common edge
λt.(t, t, t) : ∆1 → ∆3.

This edge defines an inhabitant m′ : homA(x,w), while the pair of 2-simplices
define witnesses that m′ is the composite of h ◦ g and f , and that m′ is the
composite of h and g ◦ f , respectively. In particular, (h ◦ g) ◦ f = h ◦ (g ◦ f).
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Segal types as ∞-categories

Proposition 6.9
For any f : homA(x, y) and g : homA(y, z) and h : homA(x, z) in a Segal type A,
the natural map

(g ◦ f = h) → hom2
A

(
y

x y

gf

h

)
is an equivalence.

Proof . The map is given by path induction, since when h ≡ g ◦ f the codomain
is inhabited by compg,f . Now we just sum over h and show that both the total
spaces are contractible.

The homotopies between arrows in a Segal type behave like a 2-category up to
homotopy. For instance, given p : f =homA(x,y) g and q : g =homA(x,y) h, we can
vertically compose them to get p · q : f =homA(x,y) h.
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Segal types as ∞-categories

Proposition 6.10 (Horizontal composition)
Given p : f =homA(x,y) g and q : h =homA(y,z) k in a Segal type A, there is a
concatenated equality q ◦2 p : h ◦ f =homA(x,z) k ◦ g.

Proposition 6.11 (Whiskering)
Given p : f =homA(x,y) g and h : homA(y, z) and k : homA(w, x) in a Segal type
A, we have

reflh ◦2 p = ap(h◦_)(p)
p ◦2 reflk = ap(_◦k)(p).

Proposition 6.12
We have the following equality in a Segal type whenever it makes sense:

(q′ · p′) ◦2 (q · p) = (q′ ◦2 q) · (p′ ◦2 p).

Proof. Path induction.
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Theory of Segal types

Segal types as ∞-categories

Proposition 6.13 (Fillings of 3-dimensional horns)
In a Segal type A, suppose given arrows f, g, h, k, l,m and equalities

p : g ◦ f =homA(x,z) k q : h ◦ g =homA(z,w) l r : h ◦ k =homA(x,w) m

corresponding to 2-simplices that fill out the following horn Λ3
2 → A:

y

x p q w

z

l

g

f

k h

y

_
x w

r

z

lf

k

m

h

Then the horn has a filler ∆3 → A corresponding to the concatenated equality
l ◦ f q

= (h ◦ g) ◦ f = h ◦ (g ◦ f) p
= h ◦ k r

= m.

where p and q are whiskered by h and f respectively.
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Theory of Segal types

Segal types as ∞-categories

Proof. Trick is to do path induction on p and q. Then the 2-simplices
corresponding to p and q are now compg,f and comph,g while the above chain of
equalities reduces to (h ◦ g) ◦ f = h ◦ (g ◦ f) r

= m.

By contractibility, we have
(m′, r′) = (m, r). Also we have the decomposition of 3-2-horns,

(Λ3
2 → A) '

∑
α:∆2∪∆1∆

2→A

〈
∆2 → A

∣∣Λ2
1

α

〉

where ∆2 ∪∆1 ∆2 denotes the pushout of compg,f and comph,g, with Λ2
1 being

g ◦ f and h. Thus, equality (m′, r′) = (m, r) in
〈
∆2 → A

∣∣Λ2
1

[h,g◦f ]

〉
yields

[compg,f ,comph,g,r′] = [compg,f ,comph,g,r].

The 3-simplex in 6.8 is a term of
〈
∆3 → A

∣∣Λ3
2

[compg,f ,comph,g,r′]

〉
, we transport this

term across the equality to get a term of
〈
∆3 → A

∣∣Λ3
2

[compg,f ,comph,g,r]

〉
, our desired

3-simplex.
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Thank you for being an attentive and morphically coherent audience,
as your participation enriches the categorical landscape of this

presentation.
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