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Abstract

In this project, we first go through a brief introduction to ∞-categories, followed by some high-level
background in homotopy type theory (HoTT). Next, we propose foundations for a synthetic theory
of (∞,1)-categories within homotopy type theory. We axiomatize a directed interval type, then
define higher simplices from it and use them to probe the internal categorical structures of arbitrary
types. We introduce the general theory of shapes and then add to it the theory of a strict interval.
Furthermore, we will see a bunch of important equivalences involving extension types. Finally we
define Segal types or synthetic pre-(∞,1)-categories, in which binary composites exist uniquely up
to homotopy and this automatically ensures composition is coherently associative and unital at all
dimensions.
To make the bookkeeping in such proofs manageable, we use a three-layered type theory with shapes,
whose contexts are extended by polytopes within directed cubes, which can be abstracted over using
“extension types” that generalize the path-types of cubical type theory.
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1. Introduction to 1,2,3,...∞-categories

We think of an ordinary 1-category as a linguistic template for a mathematical theory with nouns
and verbs. But as the objects mathematicians study gets more complicated, we need a more robust
linguistic template with adjectives, adverbs and so on, and that is when the idea of a higher category
or an ∞-category emerges. So, mathematicians would definitely like to use ∞-categories to help
systemize their work in the same way they are using ordinary categories today.

In addition to the objects and arrows in an ordinary 1-category, which we think of as 0 and 1-
dimensional respectively, we can visualize or think of an ∞-category as having arrows between
arrows, which we think of as inhabiting the 2-dimensional space. Then we furher have arrows
between, arrows between arrows inhabiting the 3-dimensional space and so on.

Once it was realized that higher groupoids should correspond to homotopy types, and that for
a wide range of applications it is sufficient to assume that all “higher morphisms” are invertible, a
number of different definitions of these so-called (∞, 1)-categories was suggested, with the index “1”
referring to the fact that the morphisms above the lowest dimension are weakly invertible. Here the
homotopies defining the higher morphisms of an ∞-category are to be regarded as data rather than
as mere witnesses to an equivalence relation borne by the 1-dimensional morphisms. This shift in
perspective is illustrated by the relationship between two algebraic invariants of a topological space:
the fundamental groupoid Π1, an ordinary 1-category, and the fundamental ∞-groupoid Π∞, an ∞-
category in which all of the morphisms are weakly invertible. The objects in both the categories are
the points of the ambient topological space, but in the former, the 1-morphisms are homotopy classes
of paths, while in the latter, the 1-morphisms are the paths themselves and the 2-morphisms are
explicit endpoint preserving homotopies. The groupoid Π1(X) has a very nice homotopic property,
that is, it retains information on π0(X) and π1(X) of X but forgets all higher homotopy groups of
X . And the reason is, we took homotopy classes of paths as arrows. Could we have taken instead
topological spaces of paths, we would have chance to retain all information about the homotopy type
of X , and that is why we thought of having an upgraded version, Π∞(X). This is, however, easier
said than done. It is easy to compose homotopy classes of paths, but there is no canonical way of
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composing the actual paths. To encompass examples such as these, all of the categorical structures
in an ∞-category are weak. Even at the base level of 1-morphisms, composition is not necessarily
uniquely defined but is instead witnessed by a 2-morphism and associative up to a 3-morphism whose
boundary data involves specified 2-morphism witnesses. Thus, ∞-category valued diagrams cannot
be said to commute on the nose but are instead interpreted as homotopy coherent, with explicitly
specified higher homotopies.

Let us look at a more algebraic example. An important notion of homological algebra is the
notion of derived functor. Study of derived functors led to the notion of derived category in which
the standard ambiguity in the choice of resolutions used to calculate derived functors, disappears. As
a first step, one constructs the category of complexes C(A ), A being an abelian category where all
projective resolutions, their images after application of functors, live. The second step is similar to the
notion of localization of a ring: given a ring R and a multiplicatively closed subset S of its elements,
one defines a ring homomorphism R → R[S−1] such that the image of each element in S becomes
invertible in R[S−1] and universal for this property. Localizing C(A ) with respect to the collection of
quasi-isomorphisms, we get D(A ), the derived category of A . The construction of derived category
D(A ) is a close relative to the construction of the homotopy category of topological spaces, when
we factor the set of continuous maps by an equivalence relation. The notion of derived category
is not very convenient, approximately for the same reasons we already mentioned. Localizing a
category, we destroy an important information, similarly to destroying information about higher
homotopy groups of X in the construction of the fundamental groupoid Π1(X). So, one would like
an upgraded version of derived category. In addition, there is a pleasant “side effect” in replacing
the derived category D(A ) with an infinity category. As it is well-known, D(A ) is a triangulated
category, that is an additive category endowed with a shift endofunctor, with a chosen collection of
diagrams called distinguished triangles, satisfying a list of properties. The notion of triangulated
category is a very important, but very unnatural one. Fortunately, the respective infinity categorical
notion is very natural, a property of infinity category called stability rather than a collection of extra
structures like shift functor and distinguished triangles.

The abundance of competing definitions of (∞,1)-category is somewhat similar to the abundance
of programming languages or of models of computation where all of them have in mind the same
idea of computability, but realize this idea differently. A fundamental challenge in giving a model
independent definition of ∞-categories has to do with giving a precise mathematical meaning of
the notion of a weak composition law, not just for the 1-morphisms but also for the morphisms in
higher dimensions. As a result, While proving theorems about ∞-categories, we need to first pick a
specific definition, like choosing coordinates and prove theorems with reference to that definition,
thereby providing a translation problem. It is less obvious how to compare different formalizations of
∞-categories. In all existing approaches, (∞, 1)-categories are realized as fibrant-cofibrant objects in
a certain Quillen model category for example, simpilicial sets with Joyal model structure, bisimplicial
sets with Segal category or complete Segal model structure, simplicial categories or simplicially
enriched categories, etc. The graph of Quillen equivalences between different model categories in
the above list is connected, which implies that at least the homotopy categories of different versions
of (∞, 1)-categories are equivalent. This, however, seems too weak at first sight. On the other
hand, if we choose our favorite definition of ∞-category, we can see that, first of all, any model
category gives rise to an ∞-category, the underlying ∞-category, and, furthermore, Quillen equivalent
model categories give rise to equivalent ∞-categories. In particular, ∞-categories underlying different
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models of infinity categories, are equivalent. For practical, aesthetic, and moral reasons, the ultimate
desire of practitioners is to work “model independently”, meaning that theorems proven with any
of the models of (∞, 1)-categories would apply to them all, with the technical details inherent to
any particular model never entering the discussion. Since all models of (∞, 1)-categories “have
the same homotopy theory”, the general consensus is that the choice of model should not matter
greatly, but one obstacle to proving results of this kind is that, to a large extent, precise versions of
the categorical definitions that have been established for quasi-categories had not been given for
the other models. In cases where comparable definitions do exist in different models, an ad hoc
heuristic proof of model invariance of the categorical notion in question can typically be supplied,
with details to be filled in by experts fluent in the combinatorics of each model, but it would be more
reassuring to have a systematic method of comparing the category theory of (∞, 1)-categories in
different models via arguments that are somewhat closer to the ground.

Recently, Emily Riehl and Dominic Verity has come up with an unique approach where an ∞-
category is thought of living in their own category, the category of all ∞-categories, the ∞-cosmos.
The strategy behind this is to prove theorems about ∞-cosmos in general and then they will specialize
to give the theorems about ∞-categories proven in absolutely every model, that apply universally.

However, our goal is to give a model independent definition of an (∞,1)-category. We propose
foundations for a synthetic theory of (∞,1)-categories within homotopy type theory (HoTT) in the
subsequent chapters.





2. Background of homotopy type theory

2.1 What is homotopy type theory?

Homotopy type theory (HoTT) is a relatively new area of mathematics that seeks to connect two
seemingly unrelated topics: homotopy theory and type theory. Homotopy theory is a branch of
mathematics that studies the properties of topological spaces and their invariants under continuous
deformations, known as homotopies. It studies the notion of equivalence between geometric objects,
and how they can be transformed or deformed into each other while preserving certain structural
features. On the other hand, type theory is a branch of mathematical logic that studies the formal-
ization of mathematical objects and their relationships. It provides a framework for classifying
mathematical objects into different types based on their properties and relationships, and it allows for
precise reasoning about the behavior and interaction of these objects. HoTT offers a fresh perspective
on the foundations of mathematics, and the potential to provide new insights into the nature of
mathematical objects. HoTT allows us to combine these two fields by defining types as spaces and
taking advantage of the concept of homotopy, which captures the notion of continuous deformation
in topology. This allows us to reason about types in a more geometric way and take advantage of
homotopical tools to investigate them.

We should stress that these “spaces” are treated purely homotopically, not topologically. For
instance, there is no notion of “open subset” of a type or of “convergence” of a sequence of terms of
a type. We only have “homotopical” notions, such as paths between points and homotopies between
paths, which also make sense in other models of homotopy theory such as simplicial sets. Thus, it
would be more accurate to say that we treat types as ∞-groupoids, this is a name for the “invariant
objects” of homotopy theory which can be presented by topological spaces, simplicial sets, or any
other model for homotopy theory. However, it is convenient to sometimes use topological words such
as “space” and “path”, as long as we remember that other topological concepts are not applicable.

The key new idea of the homotopy interpretation is that the logical notion of identity a = b of
two objects a,b : A of the same type A can be understood as the existence of a path p : a⇝ b from
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point a to point b in the space A. This also means that two functions f ,g : A → B can be identified if
they are homotopic, since a homotopy is just a family of paths px : f (x)⇝ g(x) in B, one for each
x : A. In type theory, for every type A there is a type IdA or =A of identifications of two terms of A.
In homotopy type theory, this is just the path space AI of all continuous maps I → A from the unit
interval I. In this way, a term p : a = b represents a path p : a⇝ b in A.

The idea of homotopy type theory arose around 2006 in independent work by Awodey and Warren
and Voevodsky, but it was inspired by Hofmann and Streicher’s earlier groupoid interpretation, in
their disproof of the uniqueness of identity proofs (UIP) using groupoids. Intuitively, the identity
type over a groupoid G is interpreted as the discrete groupoid Arr(G) of arrows in G, so that an
identity witness f : a =A b becomes an arrow f : a → b in G. However, unlike in type theory, these
cannot in turn be further related by identity terms of higher type f =(a=Ab) g, since a conventional
groupoid generally has no such higher-dimensional structure. Thus the groupoid semantics validates
a certain truncation principle, stating that all higher identity types are trivial, a form of extensionality
one dimension up. The groupoid laws for the identity types are strictly satisfied in these models,
rather than holding only up to propositional equality. This situation suggests the use of the higher-
dimensional analogues of groupoids, as formulated in homotopy theory, in order to provide models
admitting non-trivial higher identity types. In homotopy type theory, each type A can be seen to have
the structure of an ∞-groupoid. We can iterate the identity type: we can form the type p =(x=Ay) q
of identifications between identifications p,q, and the type r =(p=(x=Ay)q) s, and so on. The structure
of this tower of identity types corresponds precisely to that of the continuous paths and higher
dimensional homotopies between them in a space, or an ∞-groupoid. As a result, homotopy type
theory can be viewed as a synthetic theory of ∞-groupoids in different homotopy theoretic models.
One such classic model is the Voevodsky’s simplicial set model in which types are regarded as Kan
complexes in the Quillen model structure. In this interpretation, the identity type a =K b of any two
points a,b in a Kan complex K is itself a Kan complex.

Voevodsky recognized that the simplicial interpretation of type theory satisfies a further crucial
property, dubbed univalence, which had not previously been considered much in type theory. Adding
univalence to type theory in the form of a new axiom has far-reaching consequences, many of which
are natural, simplifying and compelling. The univalence axiom also further strengthens the homo-
topical view of type theory, since it holds in the simplicial model and other related models, while
failing under the view of types as just discrete sets.

2.2 Mystery of identity types: the Univalence axiom

One feature of dependent type theory which has previously remained comparatively unexploited,
however, is its richer treatment of equality. In traditional foundations like set theory, equality carries
no information beyond its truth-value: if two things are equal, they are equal in at most one way.
This is fine for equality between elements of discrete sets, but it is unnatural for objects of categories,
or points of spaces. In particular, it is at odds with the informal mathematical practice of treating
isomorphic objects as equal. As a reason, this usage must be so often disclaimed as an abuse of
language, and kept rigorously away from formal statements, even though it is so appealing.

In dependent type theory, equalities can carry information: two things may be equal in multi-
ple ways. So the basic objects—the types—may behave not just like discrete sets, but more generally
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like higher groupoids, or spaces. And, crucially, this is the only equality one can talk about within the
logical system: one cannot ask whether elements of a type are “equal on the nose”, in the classical
sense. The logical language only allows one to talk about properties and constructions which respect
its equality.

The Univalence Axiom, introduced by Vladimir Voevodsky, strengthens this characteristic. In
classical foundations one has sets of sets, or classes of sets, and uses these to quantify over classes of
structures. Similarly, in type theory, types of types—universes—are a key feature of the language.
Very briefly, the basic idea of the univalence axiom can be explained as follows. In type theory, one
can have a universe U , the terms of which are themselves types, A : U . Those types that are terms
of U are commonly called small types. Like any type, U has an identity type IdU , which expresses
the identity relation A = B between small types. Thinking of types as spaces, U is a space, the
points of which are spaces themselves. To understand its identity type, we must ask, how to interpret
a path p : A⇝ B between spaces in U ? The univalence axiom says that such paths correspond
roughly to homotopy equivalences A ≃ B. A bit more precisely, given any small types A and B, in
addition to the primitive type A = B of identifications of A with B, there is the defined type A ≃ B of
equivalences from A to B. Since the identity map on any object is an equivalence, by path induction,
there is a canonical map, (A = B)→ (A ≃ B). The univalence axiom states that this map is itself an
equivalence, i.e., (A = B)≃ (A ≃ B).

The Univalence Axiom states that equality between types, as elements of a universe, is the same
as equivalence between them, as types. It formalises the practice of treating equivalent structures
as completely interchangeable. It ensures that one can only talk about properties of types, or more
general structures, that respect such equivalence. It helps solidify the idea of types as some kind of
spaces, in the homotopy-theoretic sense. From the homotopical point of view, univalence implies
that spaces of the same homotopy type are connected by a path in the universe U , in accord with the
intuition of a classifying space for (small) spaces. From the logical point of view, however, it is a
radically new idea: it says that isomorphic things can be identified! Mathematicians are of course
used to identifying isomorphic structures in practice, but they generally do so by “abuse of notation”,
or some other informal device, knowing that the objects involved are not “really” identical. But in
this new foundational scheme, such structures can be formally identified, in the logical sense that
every property or construction involving one also applies to the other. Indeed, the identification is
now made explicit, and properties and constructions can be systematically transported along it.

2.3 HoTT and Higher categories

As we discussed in section 2.1 that homotopy type theory serves as a foundation for the theory of
∞-groupoids, we are curious to know whether homotopy type theory can be viewed as a foundational
system for higher categories in general. Interpreting types directly as higher categories runs into
various problems, such as the fact that not all maps between categories are exponentiable so that
not all Π-types exist, and that there are numerous different kinds of “fibrations” given the various
possible functorialities and dimensions of categories appearing as fibers. There is no reason in
principle to think these problems insurmountable, and many possible solutions have been proposed.
However, in this project we learn to pursue a somewhat indirect route to a synthetic theory of higher
categories, which has its own advantages, and may help illuminate some aspects of what an eventual
more direct theory might look like.
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Homotopy type theory admits semantics not only in simplicial sets, but in many other model
categories. In particular, as shown by Shulman, it can be interpreted in the Reedy model structure on
bisimplicial sets, also called simplicial spaces. This model structure, in turn, admits a left Bousfield
localization called the complete Segal space model structure, which presents the homotopy theory
and indeed also the category theory of (∞, 1)-categories. We cannot interpret homotopy type theory in
its usual form, in the complete Segal space model structure directly due to its lack of right properness
among other things, but we can interpret it in the Reedy model structure and identify internally some
types that correspond to Segal spaces and complete Segal spaces. That is, in contrast to ordinary
homotopy type theory where the basic objects are exactly the “synthetic ∞-groupoids”, in our theory
the basic objects are something more general, inside of which we identify two classes that we regard
as “synthetic pre-(∞, 1)-categories” and “synthetic (∞, 1)-categories”.

The identification of these “category-like types”, and the study of their properties, depends on
adding certain structure to homotopy type theory that is characteristic of the bisimplicial set model.
The fundamental such structure is a “directed interval” type, which (thinking categorically) we
denote 2. As it does in ordinary category theory, the directed interval 2 detects arrows representably
i.e., for any type A the function type 2 → A is the “type of arrows in A”. The directed interval 2
possesses a lot of useful structure, like the internal incarnation of this structure which we will discuss
in chapter 5, which is what is visible in the homotopy type theory of bisimplicial sets, is nicely
summarized by saying that it is a strict interval: a totally ordered set with distinct bottom and top
elements called 0 and 1 respectively. The strict interval structure on 2 i.e., ∆1 placed in the categorical
direction (see definition 3.3.1) allows us to define the higher simplices from it internally, and hence
the higher categorical structure of types. For instance, ∆2 = {(s, t) : 2×2 | t ⩽ s}. We regard a map
α : ∆2 → A as a “commutative triangle” in A witnessing that the composite of λ t.α(t,0) : ∆1 → A and
λ t.α(1, t) : ∆1 → A is λ t.α(t, t) : ∆1 → A. Importantly, for a general type A, two given composable
arrows i.e., two functions f ,g : 2 → A with f (1) = g(0), may not have any such “composite”, or they
may have more than one. If any two composable arrows have a unique composite in the homotopical
sense, that the type of such composites with their witnesses is contractible, we call A a Segal type
or a synthetic pre-(∞,1)-category. If a Segal type satisfies a further condition analogous to Rezk’s
“completeness” condition for Segal spaces, we call it a Rezk type or synthetic (∞,1)-category. Our
further goal in this project is to study the basic category theory of Segal types.

Given that 2 → A represent the arrow type of A, we would want to talk about the dependent
type of arrows, i.e., given two terms x,y : A, the “type of arrows from x to y”, i.e., the type of
functions f : 2 → A such that f (0) = x and f (1) = y. Obviously, one way to internalize this in
ordinary homotopy type theory is to define

homA(x,y) := ∑
f :2→A

(x =A f (0))× ( f (1) =A y).

But these equalities are then data, which have to be carried around everywhere. This is quite
tedious, and the technicalities become nearly insurmountable when we come to define commutative
triangles and commuatative squares. So, why not define homA(x,y) to be the type of functions
f : 2 → A such that x ≡ f (0) and f (1)≡ y? The first problem is that judgmental equality on A is
interpreted by the diagonal A → A×A in the slice category, which is usually not a fibration, un-
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like the path-object (see definition 3.1.8) PA→ A×A, which interprets the identity type, is a fibration.

However, since 2 → 2 is a cofibration and A → 1 is a fibration, we obtain that the pullback corner
map A2 → A×A is a fibration (see lemma 3.4.1), which represents the the desired type family
homA : A×A → U . There have been many approaches to internalize this argument, but we instead
use a more refined approach due to Lumsdaine where we have a judgemental notion of a co f ibration,
and a new type former called an extension type: if i : A↣ B is a cofibration and C : B →U is a type
family with a section d : ∏x:AC(i(x)), then there is a type

〈
∏y:BC(y)

∣∣i
d

〉
of dependent functions

f : ∏y:BC(y) such that f (i(x))≡ d(x) for all x : A.

So now we have to give rules for what counts as a cofibration, in which we have to be careful
to respect the semantics: it cannot simply be a map in any context that becomes a cofibration in
the semantic slice category, since arbitrary slice categories are no longer cartesian monoidal model
categories. However, we need not only 2 → 2 to be a cofibration, but also the inclusion of the
boundary of any simplex ∂∆n → ∆n, and we would like these to be constructible in a sensible and
uniform way rather than axiomatically asserted. One approach would be to keep the non-fibrant
types with a notion of “strict pushout”, and rules that cofibrations are closed under operations such
as the “pushout product”. We instead choose to keep all types fibrant, introducing rather a syntax for
specifying cofibrations entirely separately from the rest of the type theory. Pleasingly, this separate
syntax is exactly the coherent theory of a strict interval. We have a judgmental notion of a shape,
representing the polytopes embedded in directed cubes that can be constructed in the theory of a
strict interval, and we take the cofibrations to be the “inclusions of sub-shapes”.

In the next chapter, we look at the general model structures in a category and particularly the
Reedy model structure on bisimplicial sets.





3. Reedy model structure

3.1 Model structure on a category
A model structure on a category C is the data of three distinguished classes of morphisms which can
be (loosely) thought of as follows:

• Weak equivalences, WC , which are the morphisms that we want to invert;
• Fibrations, FibC , which play the role of surjections;
• Cofibrations, Co fC , which act like inclusions.

Definition 3.1.1 Given a commutative square of the following form:

A X

B Y

f

i p

g

h

a lift in the diagram is a morphism h : B → X such that hi = f and ph = g. A morphism i : A → B
is said to have the left lifting property (LLP) with respect to another morphism p : X → Y and p
is said to have the right lifting property (RLP) with respect to i if a lifting exists for any choice of
f and g making diagram commute.

Definition 3.1.2 A morphism f : A → B in a category C is a retract of a morphism g : C → D in
C if and only if there is a commutative diagram of the form:
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A C A

B D B

f

1A

g f

1B

In particular f is a retract of g when viewed as objects in the arrow category.

Definition 3.1.3 A model category is a category C with three distinguished classes of morphisms:

• Weak equivalences—WC ;
• Fibrations—FibC ;
• Cofibrations—Co fC ;

each of which is closed under composition. We say that a morphism that is both a fibration and a
weak equivalence is an acyclic fibration, and dually a morphism that is both a cofibration and
a weak equivalence is an acyclic cofibration. The distinguished classes of morphisms and the
category C must satisfy the following axioms:

MC1) C has all small limits and colimits. In particular, there is an initial object φ and a
terminal object ∗.
MC2) If f and g are morphism such that g f is defined and if two of f , g, and g f are weak
equivalences, then so is the third. That is, the weak equivalences satisfy the 2-out-of-3 property.
MC3) The three distinguished classes of morphisms are closed under retracts.
MC4) Given a commutative diagram of the form (2.1), a lift exists when either i is a cofibration
and p is an acyclic fibration or when i is an acyclic cofibration and p is a fibration.
MC5) Each morphism f in C can be factored in two ways:
1. f = pi, where i is a cofibration and p is an acyclic fibration.
2. f = pi, where p is a fibration and i is an acyclic cofibration.

Definition 3.1.4 Let C be a model category. An object X ∈ C is said to be:

• Fibrant if the unique morphism X →∗ is a fibration;
• Cofibrant if the unique morphism φ → X is a cofibration;
• Bifibrant if it is both fibrant and cofibrant.

■ Example 3.1 Classical Quillen model structure on Top- weak equivalences are the weak homotopy
equivalences. Fibrations are the Serre fibrations, maps which have the RLP with respect to all
inclusions of the form i : Dn → Dn × I that include the n-disk as Dn ×{0}. Cofibrations are the
retracts of relative cell complexes. ■

■ Example 3.2 Classical Quillen model structure on sSet- weak equivalences are weak homotopy
equivalences, i.e morphisms whose geometric realization is a weak homotopy equivalence of topo-
logical spaces. Cofibrations are simply the monomorphisms f : X → Y which are precisely the
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levelwise injections, i.e morphisms of simplicial sets such that fn : Xn → Yn is an injection of sets for
all n ∈ N. Fibrations are the Kan fibrations, i.e maps f : X → Y which have the right lifting property
with respect to all the horn inclusions:

Λn
i X

∆n Y

f

■

Definition 3.1.5 A weak factorization system on a category C is a pair (L,R) ∈ Mor(C )×
Mor(C ) such that

1. Every morphism f : X → Y in C can be factorized as a composite
X Y

Z

f

∈L ∈R
.

2. The classes are closed under having the lifting property with respect to one another. That is,
L (resp., R) is the class of morphisms having the left (resp., right) lifting property against every
morphisms in R (resp., L).

A model category give rise to two weak factorization systems (CofC ,FibC ∩WC ) and (CofC ∩
WC ,FibC ).

Definition 3.1.6 Let C be a model category and X ∈ C . A cylinder object Cyl(X) for X is a

factorization of the codiagonal
X ⊔X X

Cyl(X)

∇X

∈CofC ∈WC
.

Definition 3.1.7 Let f ,g : X → Y be a pair of morphisms in a model category. Then a left
homotopy η : f ∼L g is a morphism η : Cyl(X)→Y that makes the following diagram commute:

X Cyl(X) X

Y

i0

f
η

i1

g

We also have a dual notion of path objects constructed out of fibration data.

Definition 3.1.8 Let C be a model category and X ∈ C. A path object Path(X) for X is a

factorization of the diagonal
X X ×X

Path(X)
∈WC

∆X

∈FibC

.

Definition 3.1.9 Let f ,g : X → Y be a pair of morphisms in a model category. Then a right
homotopy η : f ∼R g is a morphism η : X → Path(Y ) that makes the following diagram commute:
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X

Y Path(X) Y

f g
η

d0 d1

Definition 3.1.10 1. A pair of morphisms f ,g : X → Y in a model category are homotopic,
written f ∼ g if they are both left and right homotopic.

2. A morphism f : X → Y in a model category is a homotopy equivalence if there is a morphism
h : Y → X such that h f ∼ idX and f h ∼ idY .

3.2 Reedy model structure on Fun(R,M )

In this section we learn about the Reedy model structure on the functor category Fun(R,M ), where
R is a Reedy category and M is a model category.

Definition 3.2.1 A Reedy category is a category R equipped with two wide subcategories R+

and R− and a total ordering on the objects of R by an an ordinal-valued degree function such
that
• Every nonidentity morphism in R+ raises degree.
• Every nonidentity morphism in R− lowers degree.
• Every morphism f in R factors uniquely as a map in R− followed by a map in R+.

■ Example 3.3 The Reedy category structure on ∆ is given by:
• The degree function d : Ob(∆)→ N defined by [k] 7→ k.
• A map [k]→ [n] is in ∆+ precisely if it is injective.
• A map [n]→ [k] is in ∆− precisely if it is surjective.
And the Reedy category structure on ∆op is defined by switching ∆+ and ∆−. ■

Definition 3.2.2 Let R be a Reedy category and M be a model category, then the functor
category Fun(R,M ) has a model structure in which a map A → B is

• A weak equivalence iff Ax → Bx is a weak equivalence in M for all x ∈ R.
• A cofibration iff the induced map Ax ⊔LxA LxB → Bx is a cofibration in M for all x ∈ R
• A fibration iff the induced map Ax → Bx ×MxB MxA is a fibration in M for all x ∈ R.

where LxA := colim
r→x∈R+

Ar and MxB := lim
x→r∈R−

Br are latching and matching objects of A and B at x

respectively.

3.3 Reedy fibrations of bisimplicial sets

The category sSet:= Set∆
op

of simplicial sets embeds in two “orthogonal” ways into the category
ssSet:= Set∆

op×∆op
of bisimplicial sets. We express a bismplicial set as a bismplicial space via the

isomorphism ssSet ∼= sSet∆
op

. We regard Xm,n as the set of n-simplices in the mth space of the
simplicial space X : ∆op → sSet.
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To define these two embeddings we use the external product bifunctor

sSet× sSet □−→ ssSet (A□B)m,n := Am ×Bn .

Note that ∆m ×∆n is the functor represented by (m,n) ∈ ∆×∆. In particular, ssSet is a closed
cartesian monoidal category and using exponential notation for the internal hom in ssSet, we have

(Y X)m,n = ssSet(X × (∆m□∆n),Y ) .

Definition 3.3.1 Fixing one variable to be the point ∆0, we obtain embeddings

disc : sSet _□∆0

−−−→ ssSet const : sSet ∆0□_−−−→ ssSet

of simplicial sets as discrete and constant bisimplicial sets, respectively. The discrete sim-
plicial spaces factors as

∆op sSet

Set
X

X(_)×∆0

(_)×∆0

and the constant simplicial spaces factors as

∆op sSet

1
{⋆}

{⋆}×X

(_)×X

The discrete embedding positions the data of a simplicial set in the “categorical” direction,
while the constant embedding positions the data in the “spacial” direction.

Definition 3.3.2 Given a simplicial object X in a locally small category M and a simplicial set S,
define the weighted limit {S,X} to be an object in M equipped with an isomorphism

HomM ( _,{S,X})∼= HomsSet(S,HomM ( _,X))

of functors M op → Set.

Now onwards, we take M = sSet, where HomsSet(A,X) : ∆op →Set is defined by, HomsSet(A,X)([m])=
HomsSet(A,X([m], _)).

Given a natural transformation A□B→X , i.e., collection of set maps {A[m]×B[n]→X([m], [n])}m,n⩾0,
we would like to produce a natural transformation B → {A,X} and vice-versa. But by definition
3.3.2, it is equivalent to produce a natural transformation A → HomsSet(B,X), i.e., a collection of
maps {A[m] → HomsSet(B,X([m], _))}m⩾0.
But we have, HomSet(A[m]×B[n],X([m], [n])) ∼= HomSet(A[m],HomSet(B[n],X([m], [n]))). Thus we
have the adjoint pair:
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sSet ⊥ ssSet

A□ _

{A, _}

In particular, as a consequnce of Yoneda lemma, we have

HomsSet(S,{∆
m,X})∼= HomsSet(∆

m,HomsSet(S,X))

HomsSet(S,{∆
m,X})∼= HomsSet(S,X([m], _))

{∆
m,X} ∼= X([m], _)

the mth column of X .

Definition 3.3.3 A morphism X → Y of bisimplicial sets is a Reedy fibration if and only if for all
m⩾ 0 the induced map

{∆m,X}→ {∂∆m,X}×{∂∆m,Y} {∆m,Y}

on weighted limits is a Kan fibration in sSet.

In the bisimplicial sets model, a dependent type family C : A → U is modeled by a Reedy fibration
C↠ A.

Definition 3.3.4 A bisimplicial set X is Reedy fibrant just when the unique map X → 1 is a Reedy
fibration, which is the case when

{∆m,X}→ {∂∆m,X}

is a Kan fibration in sSet.

In the bisimplicial sets model, a type is modeled by a Reedy fibrant bisimplicial set.

Also the bifunctor □ has an associated pushout product, that defines a biclosed bifunctor

sSet2 × sSet2 □̂−→ ssSet2 .

The set of maps {(∂∆m ↪→ ∆m)□̂(∂∆n ↪→ ∆n)}m,n⩾0 defines a set of generating Reedy cofibra-
tions for ssSet. A map of bisimplicial sets is a Reedy trivial fibration if and only if it has the right
lifting property with respect to this set of maps.

3.4 Pullback power axiom
The Reedy fibrations enjoy the following important “Leibniz closure” property.

Lemma 3.4.1 If i : U →V is a cofibration and p : X ↠ Y is a Reedy fibration then the map

⟨X i, pV ⟩ : XV → XU ×YU YV ,
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which we denote by {̂i, p}, is a Reedy fibration, whose domain and codomain are Reedy fibrant if X
and Y are, and which is a weak equivalence if p is.

Proof. The key here is to use the equivalence of pullback power axiom and the pushout product
axiom that holds in a closed monoidal category. We show that if i : U → V and j : A → B are
cofibrations of bisimplicial sets, then the pushout product map i×̂ j is a cofibration that is trivial if j
is.

U ×A V ×A

U ×B ⋆

V ×B

i×1A

1U× j k
1V× j

i×1B

i×̂ j

All the solid arrows in this diagram are monomorphisms and the outer square is a pullback, thus so
is the dashed arrow, being a “union of subobjects” of V ×B. If j is acyclic, then since products of
simplicial sets preserve weak equivalences, so do products of bisimplicial sets. Hence 1U × j and
1V × j are weak equivalences. Thus the map 1U × j is an acyclic cofibration so its pushout, the map
denoted k in the diagram, is again a weak equivalence. Thus, by the 2-out-of-3 (MC2, see definition
3.1.3) property, i×̂ j is a weak equivalence as well. ■

3.5 Segal spaces
Definition 3.5.1 A Reedy fibrant bisimplicial set X is a Segal space if and only if for all m⩾ 2
and 0 < i < m the induced map,

{∆m,X}→ {Λm
i ,X}

on weighted limits is a trivial fibration in sSet.

Proposition 3.5.1 A Reedy fibrant bisimplicial set X is a Segal space if and only if the induced map

X∆2□∆0 → XΛ2
1□∆0

is a Reedy trivial fibration.

Proof. Transposing across the adjunction between the cartesian product and internal hom for bisim-
plicial sets, X∆2□∆0 → XΛ2

1□∆0
is a Reedy trivial fibration if and only if X has the right lifting property

with respect to the set of maps,

{((∂∆m ↪→ ∆m)□̂(∂∆n ↪→ ∆n))×̂(Λ2
1□∆0 ↪→ ∆2□∆0)}m,n⩾0.
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This set is isomorphic to the set

{((∂∆m ↪→ ∆m)×̂(Λ2
1 ↪→ ∆2))□̂(∂∆n ↪→ ∆n)}m,n⩾0,

where the left-hand product is now the cartesian product on sSet. Transposing across the weighted
limit adjunction, we see that X∆2□∆0 → XΛ2

1□∆0
is a Reedy trivial fibration if and only if the induced

map on weighted limits

{∆m ×∆2 → X}→ {∆m ×Λ2
1
⋃

∂∆m×Λ2
1

∂∆m ×∆2,X}

is a trivial fibration of simplicial sets. Finally by the following combinatorial lemma of Joyal,
this precisely characterizes the Segal spaces, which we state without a proof. ■

Lemma 3.5.2 The following sets generate the same class of morphisms of simplicial sets under
coproduct, pushout, retract, and sequential composition:

(1) The inner horn inclusions Λm
i ↪→ ∆m, for m⩾ 2, 0 < i < m.

(2) The collection of all inclusions

{∆m ×Λ2
1
⋃

∂∆m×Λ2
1

∂∆m ×∆2 ↪→ ∆m ×∆2}m⩾0.

Proof. See [16], [Lur09, 2.3.2.1] ■

In the next chapter, we finally focus on our main goal, and the first step towards it is to develop a
three-layered type theory.
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Formally sHoTT is very similar to the recent "cubical type theories" studied by Cohen, Coquand,
Huber, Mörtberg and others, whose basic setup can also be regarded as an instance of ours, using the
theory of a de Morgan algebra. The most substantial difference is that our interval 2 describes extra
structure in an “orthogonal” direction to the native “homotopy theory” of homotopy type theory,
whereas the cubical interval I is rather a different way of describing that exact same native homotopy
theory. This is why cubical type theory also includes the cubical Kan operations as rules of type
theory. The closest analogue of this in our theory is the category structure of a Segal type induced by
the contractibility of its composition spaces.
Our type theory is basically a three layered type theory, with the first two layers being ordinary
coherent first-order logic, in which we express the theory of a strict interval 2. The third layer is then
a homotopy type theory over the first two layers. In this chapter we describe the formal apparatus of
the type theory.

4.1 The first layer: the layer of cubes

The first layer is a coherent theory of types called cubes with finite products of cubes and an
axiomatic cube 2 with no other data. Below are the formal rules of the cube layer.

1 cube 2 cube
I cube J cube

I × J cube
(t : I) ∈ Ξ

Ξ ⊢ t : I Ξ ⊢ ⋆ : I

Ξ ⊢ s : I Ξ ⊢ t : J
Ξ ⊢ ⟨s, t⟩ : I × J

Ξ ⊢ t : I × J
Ξ ⊢ π1(t) : I

Ξ ⊢ t : I × J
Ξ ⊢ π2(t) : J

Here Ξ is a context of variables belonging to cubes, and 1 denotes the empty product.
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4.2 The second layer: the layer of topes

The second layer is an intuitionistic logic over the layer of cubes. We refer to its types as topes,
thinking of them as polytopes embedded in a cube context. Topes admit operations of finite con-
junction and disjunction, but not negation, implication, or either quantifier. There is also a basic
“equality tope”, which we write with the symbol ≡, since it will be visible to the third layer as a
strict or judgmental equality. Below are the formal rules of the tope layer, where Φ is a list of topes.

φ ∈ Φ

Ξ | Φ ⊢ φ Ξ ⊢ ⊤ tope Ξ | Φ ⊢ ⊤ Ξ ⊢ ⊥ tope
Ξ | Φ ⊢ ⊥
Ξ | Φ ⊢ ψ

Ξ ⊢ φ tope Ξ ⊢ ψ tope
Ξ ⊢ (φ ∧ψ) tope

Ξ | Φ ⊢ φ Ξ | Φ ⊢ ψ

Ξ | Φ ⊢ φ ∧ψ

Ξ | Φ ⊢ φ ∧ψ

Ξ | Φ ⊢ φ

Ξ | Φ ⊢ φ ∧ψ

Ξ | Φ ⊢ ψ

Ξ ⊢ φ tope Ξ ⊢ ψ tope
Ξ ⊢ (φ ∨ψ) tope

Ξ | Φ ⊢ φ

Ξ | Φ ⊢ φ ∨ψ

Ξ | Φ ⊢ ψ

Ξ | Φ ⊢ φ ∨ψ

Ξ | Φ,φ ⊢ χ Ξ | φ ,ψ ⊢ χ Ξ | Φ ⊢ φ ∨ψ

Ξ | Φ ⊢ χ

Ξ ⊢ s : I Ξ ⊢ t : I
Ξ ⊢ (s ≡ t) tope

Ξ ⊢ s : I
Ξ | Φ ⊢ (s ≡ s)

Ξ | Φ ⊢ (s ≡ t)
Ξ | Φ ⊢ (t ≡ s)

Ξ | Φ ⊢ (s ≡ t) Ξ | Φ ⊢ (t ≡ v)
Ξ | Φ ⊢ (s ≡ v)

Ξ | Φ ⊢ (s ≡ t) Ξ,x : I ⊢ ψ tope Ξ | Φ ⊢ ψ[s/x]
Ξ | Φ ⊢ ψ[t/x]

Ξ ⊢ t : I
Ξ | Φ ⊢ t ≡ ⋆

Ξ ⊢ s : I Ξ ⊢ t : J
Ξ | Φ ⊢ π1(⟨s, t⟩)≡ s

Ξ ⊢ s : I Ξ ⊢ t : J
Ξ | Φ ⊢ π2(⟨s, t⟩)≡ t

Ξ ⊢ t : I × J
Ξ | Φ ⊢ t ≡ ⟨π1(t),π2(t)⟩

Now we define what do we mean by shapes in our theory. Roughly we can think of shapes
as polytopes embedded in directed cubes.

Definition 4.2.1 A shape is a cube together with a tope in the corresponding singleton context.
We could formalize this with a judgment and introduction rule such as the following:

I cube t : I ⊢ φ tope
{t : I | φ} shape
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4.3 The third layer: the extension types along cofibrations

There is a third layer of types that has all the ordinary type formers of homotopy type theory and
one additional type former, the extension type. All the usual type formers and rules leave the
cube and tope contexts unchanged. We include ∑-types, ∏-types with judgmental η-conversion,
coproduct types, identity types x : A,y : A ⊢ x = y type, a universe U and so on. We assume function
extensionality, but we will not need any higher inductive types, nor the univalence axiom.

In addition, we have various rules that relate the first two layers to the third. Firstly, we state
all the rules in such a way that the following substitution/cut rules are admissible:

Ξ ⊢ t : I Ξ,x : I | Φ | Γ ⊢ a : A
Ξ | Φ[t/x] | Γ[t/x] ⊢ a[t/x] : A[t/x]

Ξ | Φ ⊢ ψ Ξ | Φ,ψ | Γ ⊢ a : A
Ξ | Φ | Γ ⊢ a : A

along with the obvious rules like weakening and contraction for the cube and tope contexts. Secondly,
we have rules ensuring that the type theory respects the “tope logic” in a strict judgmental way. The
appropriate sort of respect for ⊤ and ∧ is already ensured by the cut and weakening rules. But in the
case of ⊥ and ∨, we have to assert elimination and computation rules, as shown below. Note that
the rules for ∨ say that φ ∨ψ is a strict pushout of φ and ψ under φ ∧ψ , as is always the case in a
coherent category.

Ξ | Φ ⊢⊥
Ξ | Φ | Γ ⊢ rec⊥ : A

Ξ | Φ ⊢⊥ Ξ | Φ | Γ ⊢ a : A
Ξ | Φ | Γ ⊢ a ≡ rec⊥

Ξ | Φ ⊢ φ ∨ψ Ξ | Φ | Γ ⊢ A type

Ξ | Φ,φ | Γ ⊢ aφ : A Ξ | Φ,ψ | Γ ⊢ aψ : A Ξ | Φ,φ ∧ψ | Γ ⊢ aφ ≡ aψ

Ξ | Φ | Γ ⊢ recφ ,ψ
∨ (aφ ,aψ) : A

Ξ | Φ ⊢ φ ∨ψ Ξ | Φ | Γ ⊢ A type

Ξ | Φ,φ | Γ ⊢ aφ : A Ξ | Φ,ψ | Γ ⊢ aψ : A Ξ | Φ,φ ∧ψ | Γ ⊢ aφ ≡ aψ

Ξ | Φ,φ | Γ ⊢ recφ ,ψ
∨ (aφ ,aψ)≡ aφ

Ξ | Φ ⊢ φ ∨ψ Ξ | Φ | Γ ⊢ A type

Ξ | Φ,φ | Γ ⊢ aφ : A Ξ | Φ,ψ | Γ ⊢ aψ : A Ξ | Φ,φ ∧ψ | Γ ⊢ aφ ≡ aψ

Ξ | Φ,ψ | Γ ⊢ recφ ,ψ
∨ (aφ ,aψ)≡ aψ

Ξ | Φ ⊢ φ ∨ψ Ξ | Φ | Γ ⊢ a : A

Ξ | Φ | Γ ⊢ a ≡ recφ ,ψ
∨ (a,a)
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We also require the following compatibility rule, saying that tope equality behaves like judgmental
equality

Ξ | Φ ⊢ (s ≡ t) Ξ,x : I | Φ | Γ ⊢ a : A
Ξ | Φ | Γ[s/x] ⊢ a[s/x]≡ a[t/x]

Finally, we come to the reason for introducing this whole three-layer theory: extension types
along cofibrations. As our notion of “cofibration” we use a shape inclusion, i.e. a pair of shapes
{t : I | φ} and {t : I | ψ} in the same cube such that t : I | φ ⊢ ψ . We will sometimes abbreviate this
as {t : I | φ} ⊆ {t : I | ψ}. Below are the formal rules for the extension types.

{t : I | φ} shape {t : I | ψ} shape t : I | φ ⊢ ψ

Ξ | Φ ⊢ Γ ctx Ξ, t : I | Φ,ψ | Γ ⊢ A type Ξ, t : I | Φ,φ | Γ ⊢ a : A

Ξ | Φ | Γ ⊢
〈

∏t:I|ψ A
∣∣φ
a

〉
type

Ξ, t : I | Φ,ψ | Γ ⊢ b : A Ξ, t : I | Φ,φ | Γ ⊢ b ≡ a

Ξ | Φ | Γ ⊢ λ tI|ψ .b :
〈

∏t:I|ψ A
∣∣φ
a

〉
Ξ | Φ | Γ ⊢ f :

〈
∏t:I|ψ A

∣∣φ
a

〉
Ξ ⊢ s : I Ξ | Φ ⊢ ψ[s/t]

Ξ | Φ | Γ ⊢ f (s) : A

Ξ ⊢ s : I Ξ | Φ ⊢ φ [s/t]
Ξ | Φ | Γ ⊢ f (s)≡ a[s/t]

Ξ ⊢ s : I Ξ | Φ ⊢ ψ[s/t]
Ξ | Φ | Γ ⊢ (λ tI|ψ .b)(s)≡ b[s/t]

Ξ | Φ | Γ ⊢ f :
〈

∏t:I|ψ A
∣∣φ
a

〉
Ξ | Φ | Γ ⊢ f ≡ λ tI|ψ . f (t)

In the formation rule, the judgement Ξ | Φ ⊢ Γ ctx means that Γ is a well-formed context of types
relative to Ξ | Φ. The point is that Γ is not allowed to depend on t or ψ , and (implicitly) that Φ is
also not allowed to depend on t. The type A, however, is allowed to depend on t and ψ , i.e. we allow
“dependent extensions”. Having just introduced extension types and their notation, we now proceed
to introduce an abuse of that notation. The rules above are written in the usual formal type-theoretic
way, with the dependent type A, tope Φ, and term a : A being expression metavariables containing
the variable t : I. Note that the variable t is bound in all three, i.e. its binding in ∏t:I|ψ scopes over
the rest of the expression.
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We can think of {t : I | φ} as a sub-shape of {t : I | ψ} and read the judgment Ξ, t : I | Φ,φ | Γ ⊢ a : A
as a function φ → A, we could represent a point in an extension type with a dashed arrow in the
commutative diagram:

φ A

ψ

a

In the next chapter, we will add the axioms of a strict interval to the formal apparatus of the
the type theory we discuused in this chapter, that we will use in the rest of the chapters.





5. Simplicial type theory

In this chapter, we formulate the theory in which cube and tope layers form the coherent theory of a
strict interval 2. Then we will define the most important shapes of our use, the simplices along with
their boundaries and horns.

5.1 The strict interval

We have the axiomatic cube 2 and terms 0 : 2, 1 : 2 and an axiomatic inequality tope, x : 2,y : 2 ⊢
(x⩽ y) tope. The following strict interval axioms ensures that ⩽ is a total order on 2:

x : 2 | · ⊢ (x⩽ x)

x : 2,y : 2,z : 2 | (x⩽ y),(y⩽ z) ⊢ (x⩽ z)

x : 2,y : 2 | (x⩽ y),(y⩽ x) ⊢ (x ≡ y)

x : 2,y : 2 | · ⊢ (x⩽ y)∨ (y⩽ x)

x : 2 | · ⊢ (0⩽ x)

x : 2 | · ⊢ (x⩽ 1)

· | (0 ≡ 1) ⊢⊥

5.2 Simplices and their subshapes

The interval type 2 allows us to define the simplices as the following shapes:

∆n := {⟨t1, ..., tn⟩ : 2n | tn ⩽ ...⩽ t1}

This is an abuse of notation, since formally it should be written something like

{t : (...((2×2)×2)...) | π2(t)⩽ π2(π1(t))⩽ ...⩽ (π1)
n(t)}
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but this will cause no harm . This is a meta-theoretic definition, as there is internally no “nat-
ural numbers” that we can use to parametrize a “family of shapes”. Here is a list of few shapes of
our interest:

∆
0 := {t : 1 | ⊤}

∆
1 := {t : 2 | ⊤}

∆
2 := {⟨t1, t2⟩ : 2×2 | t2 ⩽ t1}

∆
3 := {⟨t1, t2, t3⟩ : 2×2×2 | t3 ⩽ t2 ⩽ t1}

∂∆
1 := {t : 2 | (t ≡ 0)∨ (t ≡ 1)}

∂∆
2 := {(t1, t2) : ∆

2 | (0 ≡ t2 ⩽ t1)∨ (t1 ≡ t2)∨ (t2 ⩽ t1 ≡ 1)}
Λ

2
1 := {⟨t1, t2⟩ : 2×2 | (t1 = 1)∨ (t2 = 0)}

One think to note is that the reversal of the order in the coordinates in the tope is just a matter of
choice, so that ith arrow is parametrized by ti in the spine of a simplex. For instance, in a 3-simplex
f : ∆3 → A with the following boundary:

·

· ·

·

f23

f2

f1

f12 f3

·

· ·

·

f23f1

f12

f123

f3

we have,
f1(t)≡ f (t,0,0) f2(t)≡ f (1, t,0) f3(t)≡ f (1,1, t)

The other three 1-simplices are given by

f12(t)≡ f (t, t,0) f23(t)≡ f (1, t, t) f123(t)≡ f (t, t, t)

The other face and degeneracy operations between simplices can be defined in analogous ways. For
instance, the four 2-simplex faces of a 3-simplex are obtained by requiring 0 ≡ t3, t3 ≡ t2, t2 ≡ t1,
and t1 ≡ 1 respectively. These yield operations on extension types:

λ f .λ ⟨t1, t2⟩. f ⟨t1, t2,0⟩ : (∆3 → A)→ (∆2 → A)

λ f .λ ⟨t1, t2⟩. f ⟨t1, t2, t2⟩ : (∆3 → A)→ (∆2 → A)

λ f .λ ⟨t1, t2⟩. f ⟨t1, t1, t2⟩ : (∆3 → A)→ (∆2 → A)

λ f .λ ⟨t1, t2⟩. f ⟨1, t1, t2⟩ : (∆3 → A)→ (∆2 → A)

We will also use various sub-shapes of the simplices, particularly their boundaries and horns. The
elimination rules for tope disjunction in chapter 4 ensure that terms depending on such a boundary
can be “glued together” from terms depending on lower-dimensional simplices in the expected way.
For example, to define a term a : A in context ∂∆1 := {t : 2 | (t ≡ 0)∨ (t ≡ 1)}, it is necessary and
sufficient to give a term a0 : A in context t : 2 | t ≡ 0 and a term a1 : A in context t : 2 | t ≡ 1, such that if
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(t ≡ 0)∧(t ≡ 1) holds, then a0 ≡ a1. (t ≡ 0)∨(t ≡ 1) exactly behaves like the pushout of (t ≡ 0) and
(t ≡ 1) under (t ≡ 0)∧(t ≡ 1). But the last requirement is vacuous, since (t ≡ 0)∧(t ≡ 1)≡⊥ so that
in that context, a0 ≡ a1 ≡ rec⊥. Moreover, since tope equality acts like judgmental equality, assuming
t : 2 and t ≡ 0 is equivalent to assuming nothing at all, and similarly for assuming t ≡ 1. Therefore, a
term a : A in context ∂∆1 is equivalently two terms a0,a1 : A in no shape context, so that ∂∆1 behaves
like 2, the boolean type 1+1. Similarly, a term a : A in context ∂∆2 is equivalently three terms
a0,a1,a2 : A in context t : 2 such that a0[0/t]≡ a1[0/t] and a0[1/t]≡ a2[0/t] and a1[1/t]≡ a2[1/t].

5.3 Connection squares

We observe that, ∆1 ×∆1 := {t : 2×2 | ⊤} behaves like the pushout of two copies of ∆2 along their
common diagonal boundary ∆1

1 := {⟨t,s⟩ : 2×2 | t ≡ s}.

· ·

· ·

≡

·

· ·

∨

· ·

·

For since we have t : 2,s : 2 ⊢ (t ⩽ s)∨ (s ⩽ t), a term a : A in context ∆1 ×∆1 is equivalently
a term a0 : A in context t : 2,s : 2 | (t ⩽ s), which is ∆2 upto tupling and permutation of variables
and a term a1 : A in context t : 2,s : 2 | (s ⩽ t) , another copy of ∆2, such that if (t ⩽ s)∧ (s ⩽ t)
holds, then a0 ≡ a1. But (t ⩽ s),(s⩽ t) ⊢ t ≡ s, so this the context (t ⩽ s)∧ (s⩽ t) is a copy of ∆1,
embedded into the two copies of ∆2 as one of the boundary edges.

Proposition 5.3.1 For any f : 2 → A, we have squares ∨ f , ∧ f : 2×2 → A with the faces

x y

y y

f

f
f and

x x

x y

f
f

f

f

such that

∨ f (0,s)≡ f (s) ∧ f (0,s)≡ f (0)
∨ f (t,0)≡ f (t) ∧ f (t,0)≡ f (0)
∨ f (1,s)≡ f (1) ∧ f (0,s)≡ f (s)
∨ f (t,1)≡ f (1) ∧ f (t,0)≡ f (t)
∨ f (t, t)≡ f (t) ∧ f (t, t)≡ f (t)

Proof. We define

∨ f (t,s) := rect⩽s,s⩽t
∨ ( f (s), f (t))

∧ f (t,s) := rect⩽s,s⩽t
∨ ( f (t), f (s))

In both the cases, if t ⩽ s and s ⩽ t, then t ≡ s, so is f (t) ≡ f (s), so the the maps are well de-
fined. Geometrically, ∨ f glues two copies of the degenerate 2-simplex λ t.λ s. f (t) along their
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common 1-simplex face, while ∧ f similarly glues two copies of the other degenerate 2-simplex
λ t.λ s. f (s). ■

As a second application, we observe that, at least as far as maps out of it are concerned, we may
suppose ∆2 to be a retract of ∆1 ×∆1.

Proposition 5.3.2 For any type A, the type ∆2 → A is a retract of ∆1 ×∆1 → A.

Proof. We define the retraction by λ f .λ ⟨t,s⟩. f (t,s) : (∆1 ×∆1 → A)→ (∆2 → A). Then we define
the section by λ f .λ ⟨t,s⟩.rect⩽s,s⩽t

∨ ( f (t, t), f (t,s)) : (∆2 → A)→ (∆1 ×∆1 → A). Again we check
that, if t ⩽ s and s ⩽ t holds, then t ≡ s, so is f (t, t) ≡ f (t,s), hence the section is well defined.
The composite of the sectio followed by the retraction is, f 7→ λ ⟨t,s⟩.rect⩽s,s⩽t

∨ ( f (t, t), f (t,s)) 7→
λ ⟨t,s⟩.(λ ⟨t,s⟩.rect⩽s,s⩽t

∨ ( f (t, t), f (t,s)))(t,s)≡ λ ⟨t,s⟩. f (t,s)≡ f since if ⟨t,s⟩ : ∆2 then s⩽ t. So,
the composition is judgmentally equal to the identity. ■

Similar arguments apply in higher dimensions. For instance, the 3-dimensional “prism” ∆2 ×
∆1 ≡ {⟨⟨t1, t2⟩, t3⟩ | t2 ⩽ t1} can be written as the union of three 3-simplices

∆3 = {⟨⟨t1, t2⟩, t3⟩ | t3 ⩽ t2 ⩽ t1}
∆3 = {⟨⟨t1, t2⟩, t3⟩ | t2 ⩽ t3 ⩽ t1}
∆3 = {⟨⟨t1, t2⟩, t3⟩ | t2 ⩽ t1 ⩽ t3}

along their common boundary 2-simplices

∆2 = {⟨⟨t1, t2⟩, t3⟩ | t3 ≡ t2 ⩽ t1}
∆2 = {⟨⟨t1, t2⟩, t3⟩ | t2 ⩽ t3 ≡ t1}

Proposition 5.3.3 For any type A, the type ∆3 → A is a retract of ∆2 ×∆1 → A.

Proof. We define the retraction by evaluating on the "middle" 3-simplex of the prism,

·

· ·

·

λ f .λ ⟨t1, t2, t3⟩. f ⟨⟨t1, t3⟩, t2⟩ : (∆2 ×∆1 → A)→ (∆3 → A).

This is well-defined since in ∆3 we have t3 ⩽ t2 ⩽ t1, hence in particular t3 ⩽ t1.
We define the section informally as a case split by,

λ f .λ ⟨⟨t1, t2⟩, t3⟩. f (t1, t2, t2), t3 ⩽ t2
λ f .λ ⟨⟨t1, t2⟩, t3⟩. f (t1, t3, t2), t2 ⩽ t3 ⩽ t1

λ f .λ ⟨⟨t1, t2⟩, t3⟩. f (t1, t1, t2), t1 ⩽ t3
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Here in all cases we have t2 ⩽ t1, so in each case the requirement is met for f to be defined.
The agreement on the boundary 2-simplices, when t3 ≡ t1 or t3 ≡ t2, is also obvious, as is the fact
that this is a section of the above retraction. ■





6. Equivalences involving extension types

In this chapter we prove a bunch of important and interesting equivalences involving extension types
which are generalizations of standard facts about ordinary and dependent function types.

6.1 Commutation/Swapping of arguments

Theorem 6.1.1 If t : I | φ ⊢ψ and X : U , while Y : {t : I |ψ}→ X →U and f : ∏t:I|φ ∏x:X Y (t,x),
then 〈

∏t:I|ψ

(
∏x:X Y (t,x)

)∣∣∣φ
f

〉
≃ ∏x:X

〈
∏t:I|ψ Y (t,x)

∣∣∣φ
λ t. f (t,x)

〉

Proof. From left to right, define g 7→ λx.λ t.g(t,x) and from right to left, define h 7→ λ t.λx.h(x, t).
Now, we have g(t)≡ f (t) assuming φ , and since evaluation respects judgemental equalities, g(t,x)≡
f (t,x) assuming φ . On the reverse direction, we have h(x, t)≡ f (t,x) assuming φ , so by η-expansion,
λ t.λx.h(x, t)≡ λ t.λx. f (t,x)≡ f assuming φ . So, both the maps are well-defined. The composites
in both directions, g 7→ λx.λ t.g(t,x) 7→ λ t.λx.(λx.λ t.g(t,x))(x, t) ≡ λ t.λx.g(t,x) ≡ g and h 7→
λ t.λx.h(x, t) 7→ λx.λ t.(λ t.λx.h(x, t))(t,x) 7→ λx.λ t.h(x, t)≡ h respectively are judgementally equal
to the identity, by η-expansion. Therefore, the left and right hand sides are equivalent. ■

6.2 Currying and the pushout product

Theorem 6.2.1 If t : I | φ ⊢ ψ and s : J | χ ⊢ ζ , while X : {t : I | ψ} → {s : J | ζ} → U and

f : ∏<t,s>:I×J|(φ∧ζ )∨(ψ∧χ) X(t,s), then
〈

∏t:I|ψ

〈
∏s:J|ζ X(t,s)

∣∣∣χ
λ s. f (t,s)

〉∣∣∣φ
λ t.λ s. f<t,s>

〉
≃
〈

∏<t,s>:I×J|ψ∧ζ X(t,s)
∣∣∣(φ∧ζ )∨(ψ∧χ)

f

〉
≃
〈

∏s:J|ζ

〈
∏t:I|ψ X(t,s)

∣∣∣φ
λ s. f (t,s)

〉∣∣∣χ
λ t.λ s. f<t,s>

〉
.

The equivalence of the sides to the middle in Theorem 6.2.1 is a version of currying.
The shape {⟨t,s⟩ : I × J | (φ ∧ ζ )∨ (ψ ∧ χ)} may be called the pushout product of the two shape
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inclusions {t : I | φ} ⊆ {t : I | ψ} and {s : J | χ} ⊆ {s : J | ζ}. The following pushout square makes
the picture more clear:

ψ ∧ζ

(φ ∧ζ )∨ (ψ ∧χ) φ ∧ζ

ψ ∧χ φ ∧χ

The dashed arrow in the diagram is due to the universal property of the pushout square which implies,
⟨t,s⟩ : I × J | (φ ∧ζ )∨ (ψ ∧χ) ⊢ ψ ∧ζ . The dashed arrow may be called the pushout product map.

Proof. The well-formedness of the extension types are trivial. Now the equivalence between the left-
and right-hand types is again just application and re-abstraction, while the equivalence of both to the
middle type is ordinary currying. For the first with the second, we perform currying, that is, from
left to right λ t.λ s. f ⟨t,s⟩ 7→ λ ⟨t,s⟩. f ⟨t,s⟩ and right to left λ ⟨t,s⟩. f ⟨t,s⟩ 7→ λ t.λ s. f ⟨t,s⟩. Similarly,
the second and the third are equivalent. ■

6.3 Generalization of the type theoretic principle of choice

Theorem 6.3.1 If t : I | φ ⊢ ψ , while X : {t : I | ψ}→ U and Y : ∏t:I|ψ(X → U ), while
a : ∏t:I|φ X(t) and b : ∏t:I|φ Y (t,x(t)), then〈

∏t:I|ψ

(
∑x:X(t)Y (t,x)

)∣∣∣φ
λ t.(a(t),b(t))

〉
≃ ∑

f :
〈

∏t:I|ψ X(t)
∣∣φ

a

〉〈∏t:I|ψ Y (t, f (t))
∣∣φ
b

〉
.

Proof. From left to right, define h 7→ (λ t.π1(h(t)),λ t.π2(h(t))) and from right to left, define
( f ,g) 7→ λ t.( f (t),g(t)). Now, we have h(t)≡ λ t.(a(t),b(t)) assuming φ , hence π1(h(t)≡ a(t) and
π2(h(t)≡ b(t) assuming φ . On the reverse direction, we have f (t)≡ a(t) and g(t)≡ b(t) assuming
φ , so λ t.( f (t),g(t)) ≡ λ t.(a(t),b(t)) assuming φ . So, both the maps are well defined. The com-
posites in both directions, h 7→ (λ t.π1(h(t)),λ t.π2(h(t))) 7→ λ t.(λ t.π1(h(t))(t),λ t.π2(h(t))(t)) 7→
λ t.(π1(h(t)),π2(h(t))≡ h and ( f ,g) 7→ λ t.( f (t),g(t)) 7→ (λ t.π1(λ t.( f (t),g(t))(t)),λ t.π2(λ t.( f (t),
g(t))(t))) 7→ (λ t.π1(( f (t),g(t)),λ t.π2(( f (t),g(t))≡ (λ t. f (t),λ t.g(t))≡ ( f ,g) respectively are judge-
mentally equal to the identity, by β -reduction and η-expansion. Therefore, the left and right hand
sides are equivalent. ■

6.4 Composites of cofibrations

Theorem 6.4.1 Suppose t : I | φ ⊢ ψ and t : I | ψ ⊢ χ , and that X : {t : I | χ} → U and a :
∏t:I|φ X(t). Then, 〈

∏t:I|χ X
∣∣φ
a

〉
≃
(

∑
f :
〈

∏t:I|ψ X
∣∣φ

a

〉〈∏t:I|χ X
∣∣ψ

f

〉)
.

Proof. From left to right, define h 7→ (λ t.h(t),λ t.h(t)) and from right to left, define ( f ,g) 7→ λ t.g(t).
Now,whenever t : I such that χ holds, we have h(t)≡ a(t) assuming φ , so whenever t : I such that ψ

holds, we have λ t.h(t)≡ λ t.a(t) assuming φ , since t : I |ψ ⊢ χ . This implies, that whenever t : I such
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that χ holds, we have λ t.h(t)≡ λ t.h(t) assuming ψ . On the reverse direction, whenever t : I such that
χ holds, we have g(t)≡ f (t) assuming ψ and whenever t : I such that ψ holds, we have f (t)≡ a(t) as-
suming φ , so whenever t : I such that χ holds, we have g(t)≡ a(t) assuming φ . So, both the maps are
well-defined. The composites in both directions, h 7→ (λ t.h(t),λ t.h(t)) 7→ λ t.λ t.h(t)(t)≡ λ t.h(t)≡
h and ( f ,g) 7→ λ t.g(t) 7→ (λ t.λ t.g(t)(t),λ t.λ t.g(t)(t))≡ (λ t.g(t),λ t.g(t))≡ (λ t. f (t),λ t.g(t))≡
( f ,g) since whenever t : I assuming ψ , we have λ t.g(t)≡ λ t. f (t) :

〈
∏t:I|ψ X

∣∣φ
a

〉
, are judgementally

equal to the identity, by β -reduction and η-expansion. Therefore, the left and right hand sides are
equivalent. ■

6.5 Unions of cofibrations

Theorem 6.5.1 Suppose t : I ⊢ φ tope and t : I ⊢ ψ tope, and that we have X : {t : I | φ ∨ψ}→U
and a : ∏t:I|ψ X(t). Then, 〈

∏t:I|φ∨ψ X
∣∣∣ψ
a

〉
≃
〈

∏t:I|φ X
∣∣∣φ∧ψ

λ t.a(t)

〉
.

Proof. From left to right, define h 7→ λ t.h(t) and from right to left, define g 7→ λ t.recφ ,ψ
∨ (g(t),a(t)).

Since, φ ∧ψ ⊢ ψ , a(t) is defined whenever t : I such that φ ∧ψ holds. Since, φ ∧ψ ⊢ φ ⊢ φ ∨ψ , h(t)
is defined whenever t : I such that φ ∧ψ holds. So, h(t)≡ a(t) assuming φ ∧ψ holds. On the reverse
direction, the map is well defined because g(t)≡ a(t) whenever t : I assuming φ ∧ψ holds. Now,
whenever t : I such that ψ holds, we have λ t.recφ ,ψ

∨ (g(t),a(t))(t)≡ a(t). So, both the maps are well
defined. The composites in both directions, h 7→ λ t.h(t) 7→ λ t.recφ ,ψ

∨ (h(t),a(t))≡ λ t.h(t)≡ h, since
if φ holds then λ t.recφ ,ψ

∨ (h(t),a(t))(t)≡ h(t) and if φ holds, then λ t.recφ ,ψ
∨ (h(t),a(t))(t)≡ a(t)≡

h(t) and g 7→ λ t.recφ ,ψ
∨ (g(t),a(t)) ≡ λ t.λ t.recφ ,ψ

∨ (g(t),a(t))(t) ≡ λ t.g(t) ≡ g, are judgementally
equal to the identity, by β -reduction and η-expansion. Therefore, the left and right hand sides are
equivalent. ■

6.6 Relative function extensionality

In this section we will assume a function extensionality axiom for extension types with respect to the
homotopical identity types, similar to what we assume in HoTT.

Axiom 1 Supposing t : I | φ ⊢ ψ and that A : {t : I | ψ}→ U is such that each A(t) is contractible,

and moreover a : ∏t:I|φ A(t), then
〈

∏t:I|ψ A(t)
∣∣∣φ
a

〉
is contractible.

Now suppose given A : {t : I | ψ}→ U and a : ∏t:I|φ A(t), and also f ,g :
〈

∏t:I|ψ A(t)
∣∣∣φ
a

〉
. Thus

whenever t : I such that ψ holds, we can form the identity type f (t) = g(t), and thereby the extension

type
〈

∏t:I|ψ f (t) = g(t)
∣∣∣φ
λ t.refl

〉
, since a(t)≡ f (t) and a(t)≡ g(t) assuming φ . Ofcourse, we have

λ tI|ψ .refl :
〈

∏t:I|ψ f (t) = f (t)
∣∣∣φ
λ t.refl

〉
, so by identity elimination or path induction, we obtain the

canonical map

( f = g)→
〈

∏t:I|ψ f (t) = g(t)
∣∣∣φ
λ t.refl

〉
.
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Proposition 6.6.1 Assuming Axiom 1, we have the following:
(i) The map above is an equivalence.

(ii) In particular, for any f ,g :
〈

∏t:I|ψ A(t)
∣∣∣φ
a

〉
, if
〈

∏t:I|ψ f (t) = g(t)
∣∣∣φ
λ t.refl

〉
is inhabited, then so is

f = g.

Proof. It suffices to prove that for each f the induced map on total spaces(
∑

g:

〈
∏t:I|ψ A(t)

∣∣∣φ
a

〉( f = g)
)
→
(

∑
g:

〈
∏t:I|ψ A(t)

∣∣∣φ
a

〉〈∏t:I|ψ f (t) = g(t)
∣∣∣φ
λ t.refl

〉)
is an equivalence. But the domain is contractible being a based path space. Now all that re-
mains is to prove that the codomain is also contractible. By theorem 6.3.1,〈

∏t:I|ψ(∑y:A(t)( f (t) = y))
∣∣∣φ
λ t.refl

〉
≃
(

∑
g:

〈
∏t:I|ψ A(t)

∣∣∣φ
a

〉〈∏t:I|ψ f (t) = g(t)
∣∣∣φ
λ t.refl

〉)
.

Now, since each ∑y:A(t)( f (t) = y)) is contractible being a based path space, by axiom 1, we have

that
〈

∏t:I|ψ(∑y:A(t)( f (t) = y))
∣∣∣φ
λ t.refl

〉
is contractible. ■

Another important consequence of the relative function extensionality is the famous homotopy
extension property.

Proposition 6.6.2 Let t : I | φ ⊢ ψ . Assuming the relative function extensionality, if we have
A : {t : I | ψ} → U and b : ∏t:I|ψ A(t), and moreover a : ∏t:I|φ A(t) and e : ∏t:I|φ a(t) = b(t), then

we have a′ :
〈

∏t:I|ψ A(t)
∣∣∣φ
a

〉
and e′ :

〈
∏t:I|ψ a′(t) = b(t)

∣∣∣φ
e

〉
.

Proof. The type ∑y:A(t)(y = b(t)) is contractible being a based path space and by Axiom 1, the

extension type
〈

∏t:I|ψ

(
∑y:A(t)(y = b(t))

)∣∣∣φ
λ t.(a(t),e(t))

〉
is contractible, hence inhabited. Now by

theorem 6.3.1, the type ∑
f :
〈

∏t:I|ψ A(t)
∣∣φ

a

〉〈∏t:I|ψ f (t) = b(t)
∣∣φ
e

〉
is contractible, hence inhabited.

Therefore we obtain our desired a′ :
〈

∏t:I|ψ A(t)
∣∣∣φ
a

〉
and e′ :

〈
∏t:I|ψ a′(t) = b(t)

∣∣∣φ
e

〉
. ■

Now we prove that Axiom 1 follows from 6.6.1(ii) and 6.6.2.

Proposition 6.6.3 If proposition 6.6.1(ii) and the homotopy extension property hold, then the relative
function extensionality axiom holds.

Proof. Suppose A : {t : I | ψ}→ U and a : ∏t:I|φ A(t) such that each A(t) is contractible. The later
assumption supplies centers of contraction b(t) for each t : I assuming ψ , hence we obtain a section
b : ∏t:I|ψ A(t). Now, contractibility of each A(t) also shows that if φ holds then, a(t) = b(t) is
inhabited, producing a section e : ∏t:I|φ a(t) = b(t). Thus by the homotopy extension property, we

have, a′ :
〈

∏t:I|ψ A(t)
∣∣∣φ
a

〉
and e′ :

〈
∏t:I|ψ a′(t) = b(t)

∣∣∣φ
e

〉
.
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Now let f :
〈

∏t:I|ψ A(t)
∣∣∣φ
a

〉
. Now since each A(t) is contractible, we have c : ∏t:I|ψ f (t) = a′(t)

and moreover, if φ holds, then c(t) = refl since any two paths in a contractible type are equal. Thus
applying relative extensionality theorem to f (t) = a′(t) in place of A(t), c in place of b and λ t.refl

in place of a, we obtain an inhabitant of
〈

∏t:I|ψ f (t) = a′(t)
∣∣∣φ
λ t.refl

〉
and by 6.6.1(ii), f = a′. ■

Proposition 6.6.4 Assuming Axiom 1, if A : {t : I | ψ}→ U and a : ∏t:I|φ A(t) are such that each

A(t) is an n-type, then
〈

∏t:I|ψ A(t)
∣∣∣φ
a

〉
is also an n-type.

Proof. When n = −2, it is exactly the Axiom 1. So, assume that if each A(t) is a k-type, then〈
∏t:I|ψ A(t)

∣∣∣φ
a

〉
is also a k-type for some k ⩾ −2. Now let each A(t) be a (k+ 1)-type and f ,g :〈

∏t:I|ψ A(t)
∣∣∣φ
a

〉
. In order to show that f = g is a k-type, it suffices to show that

〈
∏t:I|ψ f (t) =

g(t)
∣∣∣φ
λ t.refl

〉
is a k-type since assuming Axiom 1, ( f = g)≃

〈
∏t:I|ψ f (t) = g(t)

∣∣∣φ
λ t.refl

〉
and equivalent

types are equally truncated.
Now, since each A(t) is a (k+ 1)-type, each f (t) = g(t) is a k-type, so by induction hypothesis,〈

∏t:I|ψ f (t) = g(t)
∣∣∣φ
λ t.refl

〉
is a k-type. Therefore it follows by induction that if each A(t) is an n-type,

then
〈

∏t:I|ψ a(t)
∣∣∣φ
a

〉
is also an n-type. ■





7. The theory of Segal types

In this chapter, we use the simplices to parametrize the internal categorical structure in types satisfy-
ing an analogue of the famous Segal condition which we express in the internal language. We first
define hom types of various dimensions whose terms are morphisms or compositions in another type.

Definition 7.0.1 Given x,y : A, determining a term [x,y] : A in context ∂∆1, we define,

homA(x,y) :=
〈

∆1 → A
∣∣∣∂∆1

[x,y]

〉
.

We refer to an element of homA(x,y) as an arrow from x to y in A.

This plays the role of the directed hom-space of A. Note that every f : homA(x,y) is a kind of
function from 2 to A, with the property that f (0)≡ x and f (1)≡ y.

Definition 7.0.2 Given x,y,z : A and f : homA(x,y), g : homA(y,z) and h : homA(x,z) we have an
induced term [x,y,z, f ,g,h] : A in context ∂∆2, and an extension type that we denote,

hom2
A

(
y

x z

gf

h

)
:=
〈

∆2 → A
∣∣∣∂∆2

[x,y,z, f ,g,h]

〉
.

Definition 7.0.3 A Segal type is a type A such that for all x,y,z : A and f : homA(x,y) and
g : homA(y,z) the type,

∑
h:homA(x,z)

hom2
A

(
y

x z

gf

h

)
is contractible.

In particular, since the above type is contractible, it is inhabited. The first component of this inhabi-
tant we call g◦ f : homA(x,z), the composite of g and f . The second component of this inhabitant is
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a 2-simplex in hom2
A( f ,g;g◦ f ) which we think of as a “witness that g◦ f is the composite of g and

f ”, we denote it by compg, f . The contractibility implies that composites are unique in the following
sense: given h : homA(x,z) and any witness p : hom2

A( f ,g;h), we have (h, p) = (g◦ f ,compg, f ), and
hence in particular h = g◦ f .

Now we internalize the famous Segal condition in our type theory to characterize the Segal types.

Theorem 7.0.1 A type A is Segal if and only if the restriction map,

(∆2 → A)→ (Λ2
1 → A)

is an equivalence.

Proof. If ∆1
1 denotes the diagonal 1-face {⟨s, t⟩ : 2×2 | s = t} of ∆2, then we have Λ2

1 ∩∆1
1 = ∂∆1

1
and Λ2

1 ∪∆1
1 = ∂∆2. By theorem 6.5.1 to extend a map Λ2

1 → A to ∂∆2 is equivalent to extending its
restriction to ∂∆1

1 to ∆1
1. Now by theorem 6.4.1, we have

∑
h:homA(x,z)

hom2
A

(
y

x z

gf

h

)
≡ ∑

h:

〈
∆1→A|∂∆1

[x,z]

〉
〈

∆
2 → A

∣∣∣∂∆2

[x,y,z, f ,g,h]

〉

∑
h:

〈
∆1→A|∂∆1

[x,z]

〉
〈

∆
2 → A

∣∣∣∂∆2

[x,y,z, f ,g,h]

〉
∼= ∑

l:

〈
∂∆2→A|

Λ2
1

[x,y,z, f ,g]

〉
〈

∆
2 → A

∣∣∣∂∆2

l

〉

∑
l:

〈
∂∆2→A|

Λ2
1

[x,y,z, f ,g]

〉
〈

∆
2 → A

∣∣∣∂∆2

l

〉
∼=
〈

∆
2 → A

∣∣∣Λ2
1

[x,y,z, f ,g]

〉

In other words, ∑
h:homA(x,z)

hom2
A

(
y

x z

gf

h

)
is the type of functions ∆2 → A that restrict to f

and g on Λ2
1. Now,

〈
∆2 → A

∣∣Λ2
1

[x,y,z, f ,g]

〉
is a fiber of the equivalence (∆2 → A)→ (Λ2

1 → A), hence

contractible. Therefore, by definition 7.0.3, A is Segal.
Conversely, using theorem 6.4.1 again, we have,

(∆2 → A)≃ ∑
k:Λ2

1→A

〈
∆2 → A|Λ

2
1

k

〉
.

Therefore, ∆2 → A is the total space of a type family over Λ2
1 → A whose fibers are exactly the

types ∑
h:homA(x,z)

hom2
A

(
y

x z

gf

h

)
. So, (∆2 → A)→ (Λ2

1 → A) is a contractible map, hence

an equivalence. ■

Corollary 7.0.2 If X is either a type or a shape and A : X → U is such that each A(x) is a Segal
type for all x : X , then the dependent function type ∏x:X A(x) is a Segal type.
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Proof. By theorem 6.1.1, we have (∆2 → ∏x:X A(x))≃ ∏x:X(∆
2 → A(x)) and (Λ2

1 → ∏x:X A(x))≃
∏x:X(Λ

2
1 → A(x)). Now, the fiber of ∏x:X(∆

2 → A(x)) → ∏x:X(Λ
2
1 → A(x)) at g : ∏x:X(Λ

2
1 →

A(x)) is ∏x:X

〈
∆2 → A(x)

∣∣Λ2
1

g(x)

〉
. Since A(x) is Segal,

〈
∆2 → A(x)

∣∣Λ2
1

g(x)

〉
is contractible, so is

∏x:X

〈
∆2 → A(x)

∣∣Λ2
1

g(x)

〉
by the relative function extensionality. Therefore, the map, ∏x:X(∆

2 →
A(x))→ ∏x:X(Λ

2
1 → A(x)) is contractible, hence an equivalence. So, (∆2 → ∏x:X A(x)) ≃ (Λ2

1 →
∏x:X A(x)), and by theorem 7.0.1, ∏x:X A(x) is a Segal type. ■

7.1 Identity
Identity morphisms in a Segal type are obtained as constant maps.

Definition 7.1.1 For any x : A, define a term idx : homA(x,x) by idx(s)≡ x for all s : 2.

Proposition 7.1.1 If A is a Segal type with terms x,y : A, then for any f : homA(x,y) we have
idy ◦ f = f and f◦ idx = f .

Proof. For any f : homA(x,y) we have a canonical 2-simplex:

λ ⟨s, t⟩. f (s) :

(
y

x y

idyf

f

)

to check that this indeed has the right boundary, we observe that (s,0) 7→ f (s) and (s,s) 7→ f (s),
while (1, t) 7→ f (1) = y. Thus, by the uniqueness of composites, idy ◦ f = f .
Similarly, we also have a canonical 2-simplex:

λ ⟨s, t⟩. f (t) :

(
x

x y

fidx

f

)
to check that this indeed has the left boundary, we observe that (s,0) 7→ f (0) = x, while (t, t) 7→ f (t)
and (1, t) 7→ f (t). Thus, by the uniqueness of composites, f◦ idx = f . ■

7.2 Associativity
We now prove that composition in a Segal type is associative.

Proposition 7.2.1 If A is Segal type with terms x,y,z,w : A, then for any f : homA(x,y), g : homA(y,z),
h : homA(z,w) we have (h◦g)◦ f = h◦ (g◦ f ).

Proof. By corollary 7.0.2, the type A2 := 2→ A is Segal. Thus, for any f : homA(x,y), g : homA(y,z),
h : homA(z,w), the type

∑
p:homA2 ( f ,h)

hom2
A2

( y

x z

z

y w

g

g

f

f

m′

h

hg

)
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is contractible, hence inhabited. The second component of this inhabitant is a 2-simplex witness
∆2×2 → A, where the three rectangular faces of the triangular prism being compg, f , comph,g and the
first component of the witness. Now since, a rectangular prism is three 3-simplices glued together,
we pick the middle shuffle λ (t1, t2, t3).((t1, t3), t2) : ∆3 → ∆2 ×2:

y

x z

w

g

h◦g

f

m′

g◦ f

h

The front and the down faces are identified with further restrictions, λ (s, t).(s,s, t) : ∆2 → ∆3 and
λ (s, t).(s, t, t) : ∆2 → ∆3 with a common edge λ t.(t, t, t) : ∆1 → ∆3. This common edge is actually the
inhabitant m′ : homA(x,w). Now, since A is Segal, by the uniqueness of composites, h◦ (g◦ f ) = m′

and also, (h◦g)◦ f = m′. Therefore, (h◦g)◦ f = h◦ (g◦ f ). Basically what we are doing is we are
extracting out the 3-simplex below out of the 2-simplex witness:

y

x compg, f comph,g w

z

h◦g

g

f

g◦ f h

y

s

x w

r′

z

h◦gf

g◦ f

m′

h

■

7.3 Homotopies

Let A be a Segal type with terms x,y : A. Given two arrows f ,g : homA(x,y), there are two ways to
say that f and g are the same:
• we might have a path p : f =homA(x,y) g, or

• we might have a 2-simplex q : hom2
A

(
x

x y

fidx

g

)

We now show that these two types are in fact equivalent:

Proposition 7.3.1 For any f : homA(x,y) and g : homA(y,z) and h : homA(x,z) in a Segal type A, the
natural map

(g◦ f = h)→ hom2
A

(
y

x y

gf

h

)
is an equivalence.
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Proof. The map is defined by path induction, since when h≡ g◦ f then, compg, f : hom2
A

(
y

x y

gf

h

)
.

To show that the map in the proposition is an equivalence, it suffices to show that the map of total
spaces

∑
h:homA(x,z)

(g◦ f = h)→ ∑
h:homA(x,z)

hom2
A

(
y

x y

gf

h

)
is an equivalence. But both the total spaces are contractible, the left hand side being a based path
space and the right hand side, since A is a Segal type. ■

Corollary 7.3.2 For f ,g : homA(x,y) in a Segal type A, the natural map

( f = g)→ hom2
A

(
x

x y

fidx

g

)
is an equivalence.

Proof. Take f = idx, g = f , h = g, and then it follows from proposition 7.3.1. ■

Viewing homotopies as paths between arrows in a Segal type, behaves like a 2-category up to
homotopy.

Proposition 7.3.3 Given p : f =homA(x,y) g and q : g =homA(x,y) h in a Segal type A, we have a
concatenated equality p ·q : f =homA(x,y) h.

Proof. This is just a simple application of path induction, since we have a term id(x=z) : (x = z)→
(x = z). ■

Proposition 7.3.4 Given p : f =homA(x,y) g and q : h =homA(y,z) k in a Segal type A, there is a concate-
nated equality q◦2 p : h◦ f =homA(x,z) k ◦g.

Proof. Another application of path induction, assuming g ≡ f and k ≡ h, we have the terms refl f :
f =homA(x,y) f and reflh : h =homA(y,z) h. Now, define reflh ◦2 refl f := reflh◦ f . ■

Proposition 7.3.5 Given p : f =homA(x,y) g and h : homA(y,z) and k : homA(w,x) in a Segal type A,
we have

reflh ◦2 p = ap(h◦_)(p)
p ◦2 reflk = ap(_◦k)(p).

Proof. Path induction on p. ■

Proposition 7.3.6 We have the following equality in a Segal type whenever it makes sense:

(q′ · p′)◦2 (q · p) = (q′ ◦2 q) · (p′ ◦2 p).

Proof. Path induction on all four equalities. ■
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On the other hand, if we view homotopies as 2-simplices, then a natural way to compose them is
by filling 3-dimensional horns, as in a quasicategory. We can express this in terms of whiskering and
concatenation of equalities.

Proposition 7.3.7 In a Segal type A, suppose given arrows f ,g,h,k, l,m and equalities

p : g◦ f =homA(x,z) k q : h◦g =homA(z,w) l r : h◦ k =homA(x,w) m

corresponding to 2-simplices that fill out the following horn Λ3
2 → A:

y

x p q w

z

l

g

f

k h

y

_

x w

r

z

lf

k

m

h

Then the horn has a filler ∆3 → A corresponding to the concatenated equality

l ◦ f
q
= (h◦g)◦ f = h◦ (g◦ f )

p
= h◦ k r

= m.

where p and q are whiskered by h and f respectively.

Proof. First step is to do path induction on p and q. This enables us to assume k ≡ g◦ f and l ≡ h◦g.
This implies the 2-simplices corresponding to p ≡ refl and q ≡ refl are compg, f and comph,g respec-

tively, while l ◦ f
q
= (h◦g)◦ f = h◦ (g◦ f )

p
= h◦ k r

= m reduces to (h◦g)◦ f = h◦ (g◦ f ) r
= m.

Next we recall that in proposition 7.2.1, we constructed a 3-simplex of the form

y

x compg, f comph,g w

z

h◦g

g

f

g◦ f h

y

s

x w

r′

z

h◦gf

g◦ f

m′

h

Now by the contractibility of the composition types for h and g ◦ f , we have (m′,r′) = (m,r). A
crucial observation is that, type of 3-2-horns can be decomposed as

(Λ3
2 → A)≃ ∑

α:∆2∪
∆1 ∆2→A

〈
∆2 → A

∣∣Λ2
1

α

〉
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where ∆2 ∪∆1 ∆2 denotes

y

x compg, f comph,g w

z

h◦g

g

f

g◦ f h

, with Λ2
1 being the lower two 1-

simplices
x w

zg◦ f h
sitting inside it. Thus, equality (m′,r′) = (m,r) in

〈
∆2 → A

∣∣Λ2
1

[h,g◦ f ]

〉
yields an equality of 3-2-horns [compg, f ,comph,g,r′] = [compg, f ,comph,g,r].
The 3-simplex

y

x compg, f comph,g w

z

h◦g

g

f

g◦ f h

y

s

x w

r′

z

h◦gf

g◦ f

m′

h

is inhabitant of the type
〈

∆3 → A
∣∣Λ3

2
[compg, f ,comph,g,r′]

〉
, so the trick is to transport this term across

the equality to get a term of
〈

∆3 → A
∣∣Λ3

2
[compg, f ,comph,g,r]

〉
, our desired 3-simplex.

Finally, by the naturality of path transport, the missing 2-simplex face is the transport of s along

the equality m′ = m, which is equal to the concatenation m′ r′
= h◦ (g◦ f ) r

= m of the two equalities

induced by r and r′. Thus, the equality corresponding to this face is (h◦g)◦ f s
= m′ r′

= h◦(g◦ f ) r
= m.

But the concatenation of the first two of these equalities was the definition of associativity (h◦g)◦ f =
h◦ (g◦ f ) in proposition 7.2.1, so this is equal to (h◦g)◦ f = h◦ (g◦ f ) r

= m. ■
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