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1 Definitions

We fix an universe X.

Definition 1.1 (Tensored category). Let V be a symmetric monoidal X-category
and C be a V -enriched X-category. Then C is tensored over V if for every v
in V and c in C, there exists an object v ⊗VC c in C, together with a natural
isomorphism in V

MorVC (v ⊗VC c,c′) � V (v,MorVC (c,c′))

Definition 1.2 (Cotensored category). Let V be a symmetric monoidal X-category
and C be a V -enriched X-category. Then C is cotensored over V if for every v
in V and c in C, there exists an object morVC (v,c) in C, together with a natural
isomorphism in V

MorVC (c′ ,morVC (v,c)) � V (v,MorVC (c′ , c))

Definition 1.3 (Quillen 2-variable adjunction). Let D,E and F be X-categories.
An adjunction of two variables or a 2-variable adjunction is a triplet (⊗,Mor,mor)
consisting of bifunctors

⊗ :D×E −→ F Mor : Eop ×F −→D mor :Dop ×F −→ E

together with natural isomorphisms

F (d ⊗ e, f ) � D(d,Mor(e, f )) � E(e,mor(d,f ))

Now suppose D,E and F are model X-categories and (⊗,Mor,mor) be an
adjunction of two variables. Then, (⊗,Mor,mor) is a Quillen adjunction of
two variables or a 2-variable Quillen adjunction if it satisfies the following
pushout-product axiom :

Axiom 1.1 (Pushout-product axiom). For any pair of cofibrations f : Q→ R in
D and g : S→ T in E, then the pushout-product
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f□g : (Q⊗ T )
∐

Q⊗S (R⊗ S) −→ R⊗ T

is a cofibration in F , which is trivial if f or g is.

Definition 1.4 (Symmetric monoidal model category). A symmetric monoidal
model X-category is a symmetric monoidal closed X-category (V,⊗V,1V,MorV),
equipped with a model structure such that the following axiom holds:

Axiom 1.2 (Quillen adjunction axiom). The triplet (⊗V,MorV,MorV) is a Quillen
adjunction of two variables.

Axiom 1.3 (Unit axiom). For any object A, the canonical morphism,

QV1V ⊗V A −→ 1V ⊗V A −→ A

is a weak equivalence for the functorial cofibrant replacement Q1V −→ 1V.

Definition 1.5 (Enriched model category). Let V be a symmetric monoidal
model X-category. Then a model V -category is a tensored and cotensored
V -category (C,MorVC ,⊗

V
C ,morVC ), equipped with a model structure on the underlying

X-category C such that the following axioms hold:

Axiom 1.4 (Quillen adjunction axiom). The triplet (⊗VC ,MorVC ,morVC ) is a Quillen
adjunction of two variables.

Axiom 1.5 (Unit axiom). For any object X in C, the canonical morphism

QV1V ⊗V X −→ 1V ⊗V X −→ X

is a weak equivalence for the functorial cofibrant replacement Q1V −→ 1V.

Definition 1.6 (λ-presentable object). Let λ be a X-small regular cardinal and
C be a X-category. An object K in C is called λ-compact or λ-presentable if the
corresponding corepresentable functor

MorC(K, ) : C −→ Set

commutes with all λ-filtered or λ-directed colimits.

Definition 1.7 (λ-accessible and locally λ-presentable categories). A X-category
C is called λ-accessible if:

1. C has λ-directed (or, equivalently λ-filtered) colimits.

2. C has a set A of λ-presentable objects, such that every object in C is a
λ-directed colimit of objects from A.

A X-category C is called locally λ-presentable if:
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1. C is cocomplete.

2. C has a X-small set A of λ-presentable objects, such that every object in C
is a λ-directed colimit of objects from A.

2 H-(co)local objects andH-(co)local equivalences

LetM be a model X-category and H be a class of morphisms inM.

Definition 2.1 (H-(co)local object). An object X of M is H-(co)local if X is
(co)fibrant and for every morphism f : A → B in H, the induced morphism
of homotopy function complexes (respectively, f∗ : Map(X,A) → Map(X,B))
f ∗ : Map(B,X)→Map(A,X) is a weak equivalence.

Definition 2.2 (H-(co)local equivalence). A morphism g : A → B in M is a
H-(co)local equivalence if for every H-(co)local object X, the induced morphism
of homotopy function complexes (respectively, g∗ : Map(X,A) → Map(X,B))
g∗ : Map(B,X)→Map(A,X) is a weak equivalence.

3 Smith’s Recognition Theorem

Theorem 3.1 (Smith). Suppose C is a locally X-presentable X-category, W a
subcategory of C1, and I an X-small set of morphisms of C. Suppose they satisfy the
criteria:

1. W is closed under retracts and satisfies the 2-out-of-3 axiom.

2. The set inj(I) is contained inW .

3. The intersection cof(I)∩W is closed under pushouts and transfinite composition.

4. W satisfies the solution set condition at I .

Then C is combinatorial model categeory with weak equivalences W , cofibrations
cof(I), and fibrations inj(cof(I)∩W ).

Lemma 3.2. Let J ⊆ cof(I)∩W be a X-small set of morphisms in C such that for any
commutative sqaure,

• •

• •
i w

with i in I , w inW , there exists j in J that factors it:

• ⋆ •

• ⋆ •
i j w
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Then any f inW can be factored as f = h ◦ g, where g is in cell(J) and h is in inj(I).

Proof. The proof is similar to the ordinary transfinite small object argument, it
is just that we want the interpolating morphisms to be morphisms in J instead of
I . Let f : X→ Y be a morphism inW and set P0 = X,h0 = f . Having defined Pλ
and hλ : Pλ→ Y , now for a successor ordinal, let Sλ be the set of all commutative
squares

A Pλ

B Y

i hλ

with i in I . The density assumption on J ensures te existence of a factorization

• As Pλ

• Bs Y

i js

ts

hλ

with js in J , for each square s in Sλ. Let Pλ+1 be the pushout∐
As Pλ

∐
Bs Pλ+1

∐
js

along the canonical morphism
∐
As → Pλ. Let hλ+1 be the canonical pushout

corner map from Pλ+1 to Y .∐
As Pλ

∐
Bs Pλ+1

Y

∐
js

The connecting map Pλ→ Pλ+1 is a pushout of coproducts of morphisms in J ,
which implies that the connecting map is in cell(J).
Now, at a limit ordinal λ, we define Pλ = colimα<λPα and hλ : Pλ→ Y to be the
morphism induced by {hα : Pα→ Y | α < λ}.
Let now κ be a regular cardinal greater than the rank of presentability of all

the domains of morphisms in I . The required factorization of f is X
g
−→ Pκ

h−→ Y ,

4



where g is a transfinite composition of morphisms in cell(J), hence in cell(J). So
it remains to show that h is in inj(I). Indeed consider any lifting problem

A Pκ

B Y

a

i h

where i is in I . Since Pκ is κ-filtered, A
a−→ Pκ factors through Pλ for some λ < κ.

We have the following commutative square s in Sλ

A Pλ

Pκ

B Y

i

h

The lift in the original problem is the bottom composite in the diagram

A ⋆ ⋆ Pλ

B ⋆ ⋆ Pλ+1 Pκ

i js
∐
js

Corollary 3.2.1. Under the assumptions of the previous lemma, cof(J) = cof(I)∩W .

Proof. cof(J) is the saturation of J , i.e, cof(J) is the smallest weakly saturated set
of morphisms containing J , cof(J) ⊆ cof(I)∩W . Conversely, consider any f in
cof(I)∩W , by the previous lemma, f = h ◦ g, where g is in cell(J) and h is in
inj(I). By the retract argument, f is in cof(J).

Lemma 3.3. There exists a set X-small set J satisfying the properties in lemma 3.1.

Proof. Consider the set of all morphisms from i in I to the solution setWi

• X

• Y

i wi
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form the pushout and the canonical pushout corner map c

• X

• P

Y

i ĩ
wi

c

By the transfinite small object argument, c can be factored as P
p
−→Q

q
−→ Y , where

p is in cell(I) and q is in inj(I). Set j = p ◦ ĩ. Let J be the set of all such j, one for
each morphism from i in I toWi . Indeed, ĩ is in cell(I), p is in cell(I) implying j
is in cell(I) ⊆ cof(I). Now, since wi = q◦j and q is in inj(I) ⊆W , by the 2-out-of-3
axiom, j is inW . Finally for any commutative square

• •

• •
i w

with i in I and w inW , we have the required factorization

• X X •

• Q Y •
i j wi w

q

Proof. (Theorem 3.1) Follows from lemma 3.2 and lemma 3.3.
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