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1 Definitions

We fix an universe X.

Definition 1.1 (Tensored category). Let } be a symmetric monoidal X-category
and C be a V-enriched X-category. Then C is tensored over V if for every v
in V and ¢ in C, there exists an object v ®1C/ c in C, together with a natural
isomorphism in V

MorV: (v ®g c,c)y=V(v, MorvC (c,c))

Definition 1.2 (Cotensored category). Let V be a symmetric monoidal X-category
and C be a V-enriched X-category. Then C is cotensored over V if for every v
in V and c in C, there exists an object morg(v,c) in C, together with a natural
isomorphism in V

Morvg (c/, morg(v, ) =V(v, Morvg (c’,¢))

Definition 1.3 (Quillen 2-variable adjunction). Let D,£ and F be X-categories.
An adjunction of two variables or a 2-variable adjunction is a triplet (® Mor, mor)
consisting of bifunctors

®:DxE—F Mor:EPxF —D mor:DPxF —E&
together with natural isomorphisms
F(d®e, f)=D(d,Mor(e, f)) = E(e,mor(d, f))

Now suppose D,€ and F are model X-categories and (® Mor,mor) be an
adjunction of two variables. Then, (® Mor,mor) is a Quillen adjunction of
two variables or a 2-variable Quillen adjunction if it satisfies the following
pushout-product axiom :

Axiom 1.1 (Pushout-product axiom). For any pair of cofibrations f : Q — R in
Dand g:S — T in &, then the pushout-product




fOg:(Q®T)pgs(R®S) — RT

is a cofibration in F, which is trivial if f or g is.

Definition 1.4 (Symmetric monoidal model category). A symmetric monoidal

model X-category is a symmetric monoidal closed X-category (V,®y, 1y, Mory,),
equipped with a model structure such that the following axiom holds:

Axiom 1.2 (Quillen adjunction axiom). The triplet (®y, Mory, Mory,) is a Quillen
adjunction of two variables.

Axiom 1.3 (Unit axiom). For any object A, the canonical morphism,
Qvlv®vA—) lv®VA—>A

is a weak equivalence for the functorial cofibrant replacement Q1ly — 1y.

Definition 1.5 (Enriched model category). Let V be a symmetric monoidal
model X-category. Then a model V-category is a tensored and cotensored
V-category (C,M, ®g, morg), equipped with a model structure on the underlying
X-category C such that the following axioms hold:

Axiom 1.4 (Quillen adjunction axiom). The triplet (®g,MorVg,morg) is a Quillen

adjunction of two variables.

Axiom 1.5 (Unit axiom). For any object X in C, the canonical morphism
QV1V®VX_) 1V®VX_)X

is a weak equivalence for the functorial cofibrant replacement Q1y — 1y.

Definition 1.6 (A-presentable object). Let A be a X-small regular cardinal and
C be a X-category. An object K in C is called A-compact or A-presentable if the
corresponding corepresentable functor

Mor.(K, ):C — Set

commutes with all A-filtered or A-directed colimits.

Definition 1.7 (A-accessible and locally A-presentable categories). A X-category
C is called A-accessible if:

1. C has A-directed (or, equivalently A-filtered) colimits.

2. C has a set A of A-presentable objects, such that every object in C is a
A-directed colimit of objects from A.

A X-category C is called locally A-presentable if:



1. Cis cocomplete.

2. C has a X-small set A of A-presentable objects, such that every object in C
is a A-directed colimit of objects from A.

2 'H-(co)local objects and H-(co)local equivalences

Let M be a model X-category and H be a class of morphisms in M.

Definition 2.1 (H-(co)local object). An object X of M is H-(co)local if X is
(co)fibrant and for every morphism f : A — B in H, the induced morphism
of homotopy function complexes (respectively, f. : Map(X,A) — Map(X,B))
f*:Map(B,X) — Map(A4, X) is a weak equivalence.

Definition 2.2 (H-(co)local equivalence). A morphism g: A — Bin M is a

H-(co)local equivalence if for every H-(co)local object X, the induced morphism
of homotopy function complexes (respectively, g, : Map(X,A) — Map(X, B))
¢* :Map(B, X) —» Map(A4, X) is a weak equivalence.

3 Smith’s Recognition Theorem

Theorem 3.1 (Smith). Suppose C is a locally X-presentable X-category, W a
subcategory of C1, and I an X-small set of morphisms of C. Suppose they satisfy the
criteria:

1. W is closed under retracts and satisfies the 2-out-of-3 axiom.

2. The set inj(I) is contained in WW.

3. The intersection cof(1)NW is closed under pushouts and transfinite composition.
4. W satisfies the solution set condition at I.

Then C is combinatorial model categeory with weak equivalences W, cofibrations
cof(I), and fibrations inj(cof(I) N W).

Lemma 3.2. Let ] C cof(I) N W be a X-small set of morphisms in C such that for any
commutative sqaure,

e — o

i 1v

e — o
with i in I, w in W, there exists j in ] that factors it:

e —>k — @

il lj lw

e — >k —— o



Then any f in W can be factored as f = ho g, where g is in cell(J) and h is in inj(I).

Proof. The proof is similar to the ordinary transfinite small object argument, it
is just that we want the interpolating morphisms to be morphisms in J instead of
I. Let f : X — Y be a morphism in W and set Py = X, hy = f. Having defined P,
and h, : Py — Y, now for a successor ordinal, let S, be the set of all commutative
squares

A——> P

il gu

B ——

with i in I. The density assumption on | ensures te existence of a factorization

tS
e —> A, —— Py

il | [

e — B, —— Y

with j; in ], for each square sin S,. Let Py, be the pushout

]_[As — P/\

wl ]

]_[Bs — P/\+1

along the canonical morphism [ [A; — Py. Let h),; be the canonical pushout
corner map from Py q to Y.

HAs —— B

The connecting map Py, — Py, is a pushout of coproducts of morphisms in J,
which implies that the connecting map is in cell(J).

Now, at a limit ordinal A, we define Py, = colim,.,P, and h, : Py — Y to be the
morphism induced by {h, : P, - Y |a < A}.

Let now « be a regular cardinal greater than the rank of presentability of all

h
the domains of morphisms in I. The required factorization of f is X LN P.—Y,



where g is a transfinite composition of morphisms in cell(J), hence in cell(J). So
it remains to show that / is in inj(I). Indeed consider any lifting problem

A —"> P,

il/ lh

B—— Y

where i is in I. Since P, is x-filtered, A 5 P, factors through P, for some A < «.
We have the following commutative square sin S,

A—— D

1‘3

B—— Y

=

The lift in the original problem is the bottom composite in the diagram

A > > > Py
il i [ui |
B > * > > Piiq > P,

O
Corollary 3.2.1. Under the assumptions of the previous lemma, cof(J) = cof(I) N W.

Proof. cof(]) is the saturation of J, i.e, cof(]) is the smallest weakly saturated set
of morphisms containing J, cof(J) € cof(I) N W. Conversely, consider any f in
cof(I) N W, by the previous lemma, f = ho g, where g is in cell(J) and h is in
inj(I). By the retract argument, f is in cof(J). O

Lemma 3.3. There exists a set X-small set | satisfying the properties in lemma 3.1.

Proof. Consider the set of all morphisms from i in I to the solution set W;

o — X

| e

o ——> Y



form the pushout and the canonical pushout corner map ¢

o —— X

|

By the transfinite small object argument, ¢ can be factored as P LN Q KN Y, where
pis in cell(I) and g is in inj(I). Set j = p o 7. Let J be the set of all such j, one for
each morphism from i in I to Wj. Indeed, 7 is in cell(I), p is in cell(I) implying j
is in cell(I) C cof(I). Now, since w; = qoj and g is in inj(I) € W, by the 2-out-of-3
axiom, j is in W. Finally for any commutative square

e —> o

il 1v

e — @

with i in I and w in W, we have the required factorization

Proof. (Theorem 3.1) Follows from lemma 3.2 and lemma 3.3.



